Saturday, 2 May 2015

Theory of Machines - Mechanical Engineering Multiple choice Questions and Answers

Theory of Machines -
Mechanical Engineering Multiple
choice Questions and Answers

1. Which of the following disciplines provides study
of inertia forces arising from the combined effect of
the mass and the motion of the parts
(a) theory of machines
(b) applied mechanics
(c) mechanisms
(d) kinetics
(e) kinematics.
Ans: d
2. Which of the following disciplines provides study
of relative motion between the parts of a machine
(a) theory of machines
(b) applied mechanics
(c) mechanisms
(d) kinetics
(e) kinematics.
Ans: e
3. Which of the following disciplines provides study
of the relative motion between the parts of a
machine and the forces acting on the parts
(a) theory of machines
(b) applied mechanics
(c) mechanisms
(d) kinetics
(e) kinematics.
Ans: a
4. The type of pair formed by two elements which
are so connected that one is constrained to turn or
revolve about a fixed axis of another element is
known as
(a) turning pair
(b) rolling pair
(c) sliding pair
(d) spherical pair
(e) lower pair,
Ans: a
5. Which of the following is a lower pair
(a) ball and socket i
(b) piston and cylinder
(c) cam and follower
(d) (a) and (b) above
(e) belt drive.
Ans: d
6. If two moving elements have surface contact in
motion, such pair is known as
(a) sliding pair
(b) rolling pair
(c) surface pair
(d) lower pair
(e) higher pair.
Ans: e
7. The example of lower pair is
(a) shaft revolving in a bearing
(b) straight line motion mechanisms
(c) automobile steering gear
(d) all of the above
(e) none of the above.
Ans: d
8. Pulley in a belt drive acts as
(a) cylindrical pair
(b) turning pair
(c) rolling pair
(d) sliding pair
(e) surface pair.
Ans: c
9. The example of rolling pair is
(a) bolt and nut
(b) lead screw of a lathe
(c) ball and socket joint
(d) ball bearing and roller bearing
(e) all of the above.
Ans: d
10. Any point on a link connecting double slider
crank chain will trace a
(a) straight line
(b) circle
(c) ellipse
(d) parabola
(e) hyperbola.
Ans: c
11. The purpose of a link is to
(a) transmit motion
(b) guide other links
(c) act as a support
(d) all of the above
(e) none of the above.
Ans: d
12. A universal joint is an example of
(a) higher pair
(b) lower pair
(c) rolling pair
(d) sliding pair
(e) turning pair.
Ans: b
13. Rectilinear motion of piston is converted into
rotary by
(a) cross head
(b) slider crank
(c) connecting rod
(d) gudgeon pin
(e) four bar chain mechanism.
Ans: b
14. Pitch point on a cam is
(a) any point on pitch curve
(b) the point on cam pitch curve having the
maximum pressure angle
(c) any point on pitch circle
(d) the point on cam pitch curve having the
minimum pressure angle
(e) none of the above.
Ans: b
15. The values of velocity and acceleration of piston
at near dead center for a slider-crank mechanism
will be
(a) 0, and more than co2r
(b) 0, and less than coV
(c) 0, 0
(d) cor, 0
(e) none of the above.
Ans: a
16. The example of spherical pair is
(a) bolt and nut
(b) lead screw of a lathe
(c) ball and socket joint
(d) ball bearing and roller bearing
(e) none of the above.
Ans: c
17. Cross head and guides form a
(a) lower pair
(b) higher pair
(c) turning pair
(d) rolling pair
(e) sliding pair.
Ans: e
19. A circular bar moving in a round hole is an
example of
(a) incompletely constrained motion
(b) partially constrained motion
(c) completely constrained motion
(d) successfully constrained motion
(e) none of the above
Ans: a
20. If some links are connected such that motion
between them can take place in more than one
direction, it is called
(a) incompletely constrained motion
(b) partially constrained motion
(c) completely constrained motion
(d) successfully constrained motion
(e) none of the above.
Ans: a
21. If there are L number of links in a mechanism
then number of possible inversions is equal to
(a) L + 1
(b) L - 1
(c) L
(d) L + 2
(e) L - 2.
Ans: c
22. Kinematic pairs are those which have two
elements that
(a) have line contact
(b) have surface contact
(c) permit relative motion
(d) are held together
(e) have dynamic forces.
Ans: c
24. The lower pair is a
(a) open pair
(b) closed pair
(c) sliding pair
(d) point contact pair
(e) does not exist.
Ans: b
25. Automobile steering gear is an example of
(a) higher pair
(b) sliding pair
(c) turning pair
(d) rotary pair
(e) lower pair.
Ans: e
26. In higher pair, the relative motion is
(a) purely turning
(b) purely sliding
(c) purely rotary
(d) purely surface contact
(e) combination of sliding and turning.
Ans: e
27. Which of the following has sliding motion
(a) crank
(b) connecting rod
(c) crank pin
(d) cross-head
(e) cross head guide.
Ans: d
28. The example of higher pair is
(a) belt, rope and chain drives
(b) gears, cams
(c) ball and roller bearings
(d) all of the above
(e) none of the above.
Ans: d
29.  Which of the following mechanism is obtained
from lower pair
(a) gyroscope
(b) pantograph
(c) valve and valve gears
(d) generated straight line motions
(e) all of the above.
Ans: e
30. Which of the following would constitute a link
(a) piston, piston rings and gudgeon pin
(b) piston, and piston rod
(c) piston rod and cross head
(d) piston, crank pin and crank shaft
(e) piston, piston-rod and cross head.
Ans: e
31. The Scott-Russell mechanism consists of
(a) sliding and turning pairs
(b) sliding and rotary pairs
(c) turning and rotary pairs
(d) sliding pairs only
(e) turning pairs only.
Ans: a
32. Davis steering gear consists of
(a) sliding pairs
(b) turning pairs
(c) rolling pairs
(d) higher pairs
(e) lower pairs.
Ans: a
33. Ackermann steering gear consists of
(a) sliding pairs
(b) turning pairs
(c) rolling pairs
(d) higher pairs
(e) lower pairs.
Ans: b
34. A completely constrained motion can be
transmitted with .
(a) 1 link with pin joints
(b) 2 links with pin joints
(c) 3 links with pin joints
(d) 4 links with pin joints
(e) all of the above.
Ans: d
36. Oldham's coupling is the
(a) second inversion of double slider crank chain
(b) third inversion of double slider crank chain
(c) second inversion of single slider crank chain
(d) third inversion of slider crank chain
(e) fourth inversion of double slider crank chain.
Ans: b
37. Sense of tangential acceleration of a link
(a) is same as that of velocity
(b) is opposite to that of velocity
(c) could be either same or opposite to velocity
(d) is perpendicular to that of velocity
(e) none of the above.
Ans: c
38. A mechanism is an assemblage of
(a) two links
(b) three links
(c) four links or more than four links
(d) all of the above
(e) none of the above.
Ans: c
39. The number of links in pantograph mechanism is
equal to
(a) 2
(b) 3
(c) 4
(d) 5
(e) 6.
Ans: c
40. Elements of pairs held together mechanically is
known as
(a) closed pair
(b) open pair
(c) mechanical pair
(d) rolling pair
(e) none of the above.
Ans: a
41. Shaft revolving in a bearing is the following type
of pair
(a) lower pair
(b) higher pair
(c) spherical pair,
(d) cylindrical pair
(e) bearing pair.
Ans: a
42. Rectangular bar in a rectangular hole is the
following type of pair
(a) completely constrained motion
(b) partially constrained motion
(c) incompletely constrained motion
(d) freely constrained motion
(e) none of the above.
Ans: a
43. A foot step bearing and rotor of a vertical
turbine form examples of
(a) incompletely constrained motion
(b) partially constrained motion
(c) completely constrained motion
(d) successfully constrained motion
(e) none of the above.
Ans: b
44. A slider crank chain consists of following
numbers of turning and sliding pairs
(a) I, 3
(b) 2, 2
(c) 3, 1
(d) 4, 0
(e) 0, 4.
Ans: c
46. Relationship between the number of links (L) and
number of pairs (P) is
(a) P = 2L-4
(b) P = 2L + 4
(c) P = 2L+2
(d) P = 2L-2
(e) P = L-4.
Ans: c
2.49. In problem 47, the chain is unconstrained
when
(a) L.H.S. = R.H.S.
(b) L.H.S. > R.H.S.
(c) L.H.S. < R.H.S.
(d) there is no such criterion for checking above
requirement
(e) none of the above.
Ans: c
50. In problem 47, the chain is constrained when
(a) L.H.S. = R.H.S.
(b) L.H.S. < R.H.S.
(c) L.H.S. > R.H.S.
(d) there is no such criterion for checking above
requirement
(e) none of the above.
Ans: a
51. The tendency of a body to resist change from
rest or motion is known as
(a) mass
(b) friction
(c) inertia
(d) resisting force
(e) resisting torque.
Ans: c
53. The type of coupling used to join two shafts
whose axes are neither in same straight line nor
parallel, but intersect is
(a) flexible coupling
(b) universal coupling
(c) chain coupling
(d) Oldham's coupling
(e) American coupling.
Ans: b
54. The advantage of the piston valve over D-slide
valve is that in the former case
(a) wear is less
(b) power absorbed is less
(c) both wear and power absorbed are low
(d) the pressure developed being high provides
tight sealing
(e) there is overall economy of initial cost,
maintenance and operation.
Ans: c
55. Flexible coupling is used because
(a) it is easy to disassemble
(b) it is easy to engage and disengage
(c) it transmits shocks gradually
(d) it prevents shock transmission and eliminates
stress reversals
(e) it increases shaft life.
Ans: d
56. With single Hooke's joint it is possible to connect
two shafts, the axes of which have an angular
misalignment up to
(a) 10°
(b) 20°
(c) 30°
(d) 40°
(e) 60°.
Ans: d
57. The Hooke's joint consists of :
(a) two forks
(b) one fork
(c) three forks
(d) four forks
(e) five forks.
Ans: a
58. The Klein's method of construction for
reciprocating engine mechanism
(a) is based on acceleration diagram
(b) is a simplified form of instantaneous center
method
(c) utilises a quadrilateral similar to the diagram of
mechanism for reciprocating engine
(d) enables determination of Corioli's component
(e) none of the above.
Ans: c
59. It is required to connect two parallel shafts, the
distance between whose axes is small and variable.
The shafts are coupled by
(a) universal joint
(b) knuckle joint
(c) Oldham's coupling
(d) flexible coupling
(e) electromagnetic coupling.
Ans: c
60. The e.g. of a link in any mechanism would
experience
(a) no acceleration
(b) linear acceleration
(c) angular acceleration
(d) both angular and linear accelerations
(e) none of the above.
Ans: d
61. In elliptical trammels
(a) all four pairs are turning
(b) three pairs turning and one pair sliding
(c) two pairs turning and two pairs sliding
(d) one pair turning and three pairs sliding
(e) all four pairs sliding.
Ans: c
62. In automobiles the power is transmitted from
gear box to differential through
(a) bevel gear
(b) universal joint
(c) Hooke's joint
(d) Knuckle joint
(e) Oldham's coupling.
Ans: c
63. The indicator using Watt mechanism is known
as
(a) Thompson indicator
(b) Richard indicator
(c) Simplex indicator
(d) Thomson indicator
(e) none of the above.
Ans: b
64. The Ackermann steering mechanism is
preferred to the Davis type in automobiles because
(a) the former is mathematically accurate
(b) the former is having turning pair
(c) the former is most economical
(d) the former is most rigid
(e) none of thfr above.
Ans: b
12-65. Transmission of power from the engine to
the rear axle of an automobile is by means of
(a) compound gears
(b) worm and wheel method
(c) Hooke's joint
(d) crown gear
(e) bevel gears.
Ans: c
66. When a ship travels in a sea, which of the effect
is more dangerous
(a) steering
(b) pitching
(c) rolling
(d) all of the above
(e) none of the above.
Ans: b
67. In an ideal machine, the output as compared to
input is
(a) less
(b) more
(c) equal
(d) may be less or more depending on efficiency
(e) always less.
Ans: c
68. Governor is used in automobile to
(a) decrease the variation of speed
(b) to control
(c) to control SN
(d) all of the above
(e) none of the above.
Ans: c
69. In gramophones for adjusting the speed of the
turntable, the following type of governor is
commonly employed
(a) Hartung governor
(b) Wilson Hartnell governor
(c) Pickering governor
(d) Inertia governor
(e) none of the above.
Ans: c
70. For fluctuating loads, welsuited bearing is
(a) ball bearing
(b) roller bearing
(c) needle roller bearing
(d) thrust bearing
(e) sleeve bearing.
Ans: c
71. Crowning on pulleys helps
(a) in increasing velocity ratio
(b) in decreasing the slip of the belt
(c) for automatic adjustment of belt posi-tion so that
belt runs centrally
(d) increase belt and pulley life
(e) none of the above.
Ans: c
72. Idler pulley is used
(a) for changing the direction of motion of the belt
(b) for applying tension
(c) for increasing -velocity ratio
(d) all of the above
(e) none of the above.
Ans: b
73. In multi-V-belt transmission, if one of the belt is
broken, we have to change the
(a) broken belt
(b) broken belt and its adjacent belts
(c) all the belts
(d) there is no need of changing any one as
remaining belts can take care of transmission of
load
(e) all the weak belts.
Ans: c
74. The moment on the pulley which produces
rotation is called
(a) inertia
(b) momentum
(c) moment of momentum
(d) work
(e) torque.
Ans: e
75. Creep in belt drive is due to
(a) material of the pulley
(b) material of the belt
(c) larger size of the driver pulley
(d) uneven extensions and contractions due to
varying tension
(e) expansion of belt.
Ans: d
76. TJie horse power transmitted by a belt is
dependent upon
(a) tension on tight side of belt
(b) tension on slack side of belt
(c) radius of pulley
(d) speed of pulley
(e) all of the above.
Ans: e
77. The locus of a point on a thread unwound from a
cylinder will be
(a) a straight line
(b) a circle
(c) involute
(d) cycloidal
(e) helix.
Ans: c
78. To transmit power from one rotating shaft to
another whose axes are neither parallel nor
intersecting, use
(a) spur gear
(b) spiral gear
(c) bevel gear
(d) worm gear
(e) crown gear.
Ans: d
79. For S.H.M. cam, the acceleration of the follower
at the ends of the stroke and aimidstroke
respectively, is
(a) maximum and zero
(b) zero and maximum
(c) minimum and maximum
(d) zero and minimum
(e) maximum and minimum.
Ans: a
80. Throw of a cam is the maximum distance of the
follower from
(a) base circle
(b) pitch circle
(c) root circle
(d) prime circle
(e) inner circle.
Ans: a
81. To obviate axial thrust, following gear drive is
used
(a) double helical gears having opposite teeth
(b) double helical gears having identical teeth
(c) single helical gear in which one of the teeth of
helix angle a is more
(d) mutter gears
(e) none of the above.
Ans: a
82. Which of the following is false statement in
respect of differences between machine and
structure
(a) Machines transmit mechanical work, whereas
structures transmit forces
(b) In machines, relative motion exists be-tween its
members, whereas same does hot exist in case of
structures
(c) Machines modify movement and work, whereas
structures modify forces
(d) Efficiency of machines as well as structures is
below 100%
(e) Machines are run by electric motors, but
structures are not.
Ans: d
83. If D1 and D2 be the diameters of driver and
driven pulleys, then belt speed is proportional to
(a) D1/D2
(b) D2/D1
(C) D1-D2.
(d) D1
(e) D1+D2.
Ans: d
84. Typewriter constitutes
(a) machine
(b) structure
(c) mechanism
(d) inversion
(e) none of the above.
Ans: c
85. Lower pairs are those which have
(a) point or line contact between the two elements
when in motion
(b) surface contact between the two elements when
in motion
(c) elements of pairs not -held together
mechanically
(d) two elements that permit relative motion
(e) none of the above.
Ans: b
86. A point on a link connecting double slider crank
chain traces a
(a) straight line
(b) circle
(c) parabola
(d) hyperbola
(e) ellipse.
Ans: e
87. A pantograph is a mechanism with
(a) lower pairs
(b) higher pairs
(c) rolling pairs
(d) turning pairs
(e) spherical pairs.
Ans: a
88. Kinematic pairs are those which have
(a) point or line contact between the two elements
when in motion
(b) surface contact between the two ele-ments
when in motion
(c) elements of pairs not held together mechanically
(d) two elements that permit relative mo-tion
(e) none of the above.
Ans: d
89. If the opposite links of a four bar linkage are
equal, the links will always form a
(a) triangle
(b) rectangle
(c) parallelogram
(d) pentagon
(e) trapezoid.
Ans: c
90. Higher pairs are those which have
(a) point or line contact between the two elements
when in motion
(b) surface contact between the two ele-ments
when in motion
(c) elements of pairs not held together mechanically
(d) two elements that permit relative motion
(e) none of the above.
Ans: a
91. A cam mechanism imparts following motion
(a) rotating
(b) oscillating
(c) reciprocating
(d) all of the above
(e) none of the above.
Ans: d
92. A cam with a roller follower would con stitute
following type of pair
(a) lower pair
(b) higher pair
(c) open pair
(d) close pair
(e) cam pair.
Ans: b
93. The approximate straight line mechanism is a
(a) four bar linkage
(b) 6 bar linkage
(c) 8 bar linkage
(d) 3 bar linkage
(e) 5 bar linkage.
Ans: a
94. "Open pairs are those which have
(a) point or line contact between the two elements
when in motion
(b) surface contact between the two ele-ments
when in motion
(c) elements of pairs not held together mechanically
(d) two elements that permit relative motion
(e) none of the above.
Ans: c
95. Peaucellier mechanism has
(a) eight links
(b) six links
(c) four links
(d) twelve links
(e) five links.
Ans: a
96. Hart mechanism has
(a) eight links
(b) six links
(c) four links
(d) twelve links
(e) five links.
Ans: b
97. A chain comprises of 5 links having 5 joints. Is it
kinematic chain ?
(a) yes
(b) no
(c) it is a marginal case
(d) data are insufficient to determine it
(e) unpredictable.
Ans: b
99. The main disadvantage of the sliding pair is that
it is
(a) bulky
(b) wears rapidly
(c) difficult to manufacture
(d) (a) and (b) above
(e) (a) and (c) above.
Ans: d
100. For a kinematic chain to be considered as
mechanism
(a) two links should be fixed
(b) one link should be fixed
(c) none of the links should be fixed
(d) there is no such criterion
(e) none of the above.
Ans: b
101. An eccentric sheave pivoted at one point
rotates and transmits oscillatory motion to a link
whose one end is pivoted and other end is
connected to it. This mechanism has
(a) 2 links
(b) 3 links
(c) 4 links
(d) 5 links
(e) none of the above.
Ans: c
102. Whitworth quick return mechanism is obtained
by inversion of
(a) slider crank mechanism
(b) kinematic chain
(c) five link mechanism
(d) roller cam mechanism
(e) none of the above.
Ans: a
103. In its simplest form, a cam mechanism
consists of following number of links
(a) 1
(b) 2
(c) 3
(d) 4
(e) none.
Ans: c
104. Which of the following mechanisms produces
mathematically an exact straight line motion
(a) Grasshopper mechanism
(b) Watt mechanism
(c) Peaucellier's mechanism
(d) Tchabichiff mechanism
(e) Ackermann mechanism.
Ans: c
105. In a mechanism, usually one link is fixed.
If the fixed link is changed in a kinematic chain,
then relative motion of other links
(a) will remain same
(b) will change
(c) could change or remain unaltered depending oh
which link is fixed
(d) will not occur
(e) none of the above.
Ans: a
106. A kinematic chain requires at least
(a) 2 links and 3 turning pairs
(b) 3 links and 4 turning pairs
(c) 4 links and 4 turning pairs
(d) 5 links and 4 turning pairs
(e) none of the above.
Ans: c
107. In a darg link quick return mechanism, the
shortest link is always fixed. The sum of the
shortest and longest link is
(a) equal to sum of other two
(b) greater than sum of other two
(c) less than sum of other two
(d) there is no such relationship
(e) none of the above.
Ans: c
108. The following is the inversion of slider crank
chain mechanism
(a) Whitworth quick return mechanism
(b) hand pump
(c) oscillating cylinder engine
(d) all of the above
(e) none of the above.
Ans: d
109. Kinematic pairs are those which have
(a) two elements held together mechani-cally
(b) two elements having relative motion
(c) two elements having Coroili's com-ponent
(d) minimum of two instantaneous centres
(e) all of the above.
Ans: b
110 A typewriter mechanism has 7 number of
binary joints, six links and none of higher pairs. The
mechanism is
(a) kinematically sound
(b) not sound
(c) soundness would depend upon which link is kept
fixed
(d) data is not sufficient to determine same
(e) none of the above.
Ans: a
111. In a four-bar chain it is required to give an
oscillatory motion to the follower for a continuous
rotation of the crank. For the lengths of 50 mm of
crank and 70 mm of the follower, determine
theoretical maximum length of coupler. The distance
between fixed pivots of crank and followers is
(a) 95 mm
(b) slightly less than 95 mm
(c) slightly more than 95 mm
(d) 45 mm
(e) none of the above.
Ans: b
112. In above example, the minimum length of the
coupler will be
(a) 45 mm
(b) slightly less than 45 mm
(c) slightly more than 45 mm
(d) 95 mm
(e) none of the above.
Ans: c
113. In S.H.M., acceleration is proportional to
(a) velocity
(b) displacement
(c) rate of change of velocity
(d) all of the above
(e) none of the above.
Ans: b
114. For simple harmonic motion of the of follower,
a cosine curve represents
(a) displacement diagram
(b) velocity diagram
(c) acceleration diagram
(d) all of the above
(e) none of the above.
Ans: c
115. In S.H.M., the velocity vector w.r.t.
displacement vector
(a) leads by 90°
(b) lags by 90°
(c) leads by 180°
(d) are in phase
(e) could be anywhere.
Ans: a
116. A body having moment of inertia o:m2 is
rotating at 210 RPM and r with another body at rest
having I
40 kg m2. The resultant speed after ing will be
(a) 90 RPM
(b) 100 RPM
(c) 80 RPM
(d) data are insufficient
(e) none of the above.
Ans: a
117. Inertia force acts
(a) perpendicular to the accel< force
(b) along the direction of accel* force
(c) opposite to the direction of ace ing force
(d) in any direction w.r.t. accel* force depending on
the magnit two
(e) none of the above.
Ans: c
118. The frequency of oscillation at compared to
earth will be
(a) 6 times more
(b) 6 times less
(c) 2.44 times more
(d) 2.44 times,less
(e) 36 times less.
Ans: d
119. Polar moment of inertia (IP) of ac disc is to ht
determined by suspen by a wire and noting the
frequei
oscillations (/)
(a) Ipocf
(b) Ipocf
(C) Ip oc j
(d) Ipoc-
(e) none of the above.
Ans: c
120. If the radius of gyration of a compound
pendulum about an axis through e.g. is more, then
its frequency of oscillation will be
(a) less
(b) more
(c) same
(d) data are insufficient to determine same
(e) none of the above.
Ans: a
121. The Bifilar suspension method is used to
determine
(a) natural frequency of vibration
(b) position of balancing weights
(c) moment of inertia
(d) centripetal acceleration'
(e) angular acceleration of a body.
Ans: c
122. Which is the false statement about the
properties of instantaneous centre
(a) at the instantaneous center of rotation, one rigid
link rotates instantaneously relative to another for
the configuration of mechanism considered
(b) the two rigid links have no linear velocities
relative to each other at the instantaneous centre
(c) the two rigid links which have no linear velocity
relative to each other at this center have the same
linear velocity to the third rigid link
(d) the double centre can be denoted either by 02\
or Ol2, but proper selection should be made
(e) none of the above.
Ans: d
123. Instantaneous center of rotation of a link in a
four bar mechanism lies on
(a) right side pivot of this link
(b) lift side pivot of this link
(c) a point obtained by intersection on extending
adjoining links
(d) can't occur
(e) none of the above.
Ans: c
124. The number of links and instantaneous centers
in a reciprocating engine mechanism are
(a) 4, 4
(b) 4, 5
(c) 5, 4
(d) 6, 4
(e) 4, 6.
Ans: e
125. According to Kennedy's theorem, if three
bodies have plane motions, their instantaneous
centers lie on
(a) a triangle
(b) a point
(c) two lines
(d) a straight line
(e) a curve.
Ans: d
126. In a rigid link OA, velocity of A w.r.t. will be
(a) parallel to OA
(b) perpendicular to OA
(c) at 45° to OA
(d) along AO
(e) along OA.
Ans: b
127. Two systems shall be dynamically equivalent
when
(a) the mass of two are same
(b) e.g. of two coincides
(c) M.I. of two about an axis through e.g. is equal
(d) all of the above
(e) none of the above.
Ans: d
128. The velocity of any point in mechanism relative
to any other point on the mechanism on velocity
polygon is represented by the line
(a) joining the corresponding points
(b) perpendicular to line as per (a)
(c) not possible to determine with these data
(d) at 45° to line as per (a)
(e) none of the above.
Ans: a
129. The absolute acceleration of any point P in a
link about center of rotation 0 is
(a) along PO
(b) perpendicular to PO
(c) at 45° to PO
(d) along OP
(e) none of the above.
Ans: e
130. Angular acceleration of a link can be
determined by dividing the
(a) centripetal component of acceleration with
length of link
(b) tangential component of acceleration with length
of link
(c) resultant acceleration with length of link
(d) all of the above
(e) none of the above.
Ans: b
131. Corioli's component of acceleration exists
whenever a point moves along a path that has
(a) linear displacement
(b) rotational motion
(c) tangential acceleration
(d) centripetal acceleration
(e) none of the above.
Ans: b
132. The direction of Corioli's component of
acceleration is the direction
(a) of relative velocity vector for the two coincident
points rotated by 90° in the direction of the angular
velocity of the rotation of the link
(b) along the centripetal acceleration
(c) along tangential acceleration
(d) along perpendicular to angular velocity
(e) none of the above.
Ans: a
133. In a shaper mechanism, the Corioli's
component of acceleration will
(a) not exist
(b) exist
(c) depend on position of crank
(d) unpredictable
(e) none of the above.
Ans: b
134. The magnitude of tangential acceleration is
equal to
(a) velocity2 x crank radius
(b) velocityvcrankradius
(c) (velocity/crankradius)
(d) velocity x crank radius2
(e) none of the above.
Ans: b
135. Tangential acceleration direction is
(a) along the angular velocity
(b) opposite to angular velocity
(c) may be any one of these
(d) perpendicular to angular velocity
(e) none of the above.
Ans: c
136. Corioli's component is encountered in
(a) quick return mechanism of shaper
(b) four bar chain mechanism
(c) slider crank mechanism
(d) (a) and (c) above
(e) all of the above.
Ans: a
137. Klein's construction gives a graphica
construction for
(a) slider-crank mechanism
(b) velocity polygon
(c) acceleration polygon
(d) four bar chain mechanism
(e) angular acceleration.
Ans: c
138. Klein's construction can be used to determine
acceleration of various parts when the crank is at
(a) inner dead centre
(b) outer dead centre
(c) right angles to the link of the stroke
(d) at 45° to the line of the stroke
(e) all of the above.
Ans: e
139. The number of  centers in a crank driven slider
crank mechanism are
(a) 0
(b) 2
(c) 4
(d) 6
(e) may be any number depending upon position of
mechanism.
Ans: b
140. Corioli's component acts
(a) perpendicular to sliding surfaces
(b) along sliding surfaces
(c) somewhere in between above two
(d) unpredictable
(e) none of the above.
Ans: a
141. The sense of Corioli's component is such that
it
(a) leads the sliding velocity vector by 90°
(b) lags the sliding velocity vector by 90°
(c) is along the sliding velocity vector
(d) leads the sliding velocity vector by 180°
(e) none of the above.
Ans: a
142. Klein's construction can be used when
(a) crank has a uniform angular velocity
(b) crank has non-uniform velocity
(c) crank has uniform angular acceleration
(d) crank has uniform angular velocity and angular
acceleration
(e) there is no such criterion.
Ans: a
143. Klein's construction is useful to determine
(a) velocity of various parts
(b) acceleration of various parts
(c) displacement of various parts
(d) angular acceleration of various parts
(e) all of the above.
Ans: b
144. A circle passing through the pitch point with its
center at the center of cam axis is known as
(a) pitch circle
(b) base circle
(c) prime circle
(d) outer circle
(e) cam circle.
Ans: c
145. The pressure angle of a cam depends upon
(a) offset between centre lines of cam and follower
(b) lift of follower
(c) angle of ascent
(d) sum of radii of base circle and roller follower
(e) all of the above.
Ans: e
146. Cam size depends upon
(a) base circle
(b) pitch circle
(c) prime circle
(d) outer circle
(e) none of the above.
Ans: a
147. Cylindrical cams can be classified as
(a) circular
(b) tangent
(c) reciprocating
(d) all of the above
(e) none of the above.
Ans: e
148. The maximum value of the pressure angle in
case of cam is kept as
(a) 10°
(b) 14°
(c) 20°
(d) 30°
(e) 25°.
Ans: d
149. For the same lift and same angle of ascent, a
smaller base circle will give
(a) a small value of pressure angle
(b) a large value of pressure angle
(c) there is no such relation with pressure angle
(d) something else
(e) none of the above is true.
Ans: b
150. Cam angle is defined as the angle
(a) during which the follower returns to its initial
position
(b) of rotation of the cam for a definite displacement
of the follower
(c) through which, the cam rotates during the period
in which the follower remains in the highest position
(d) moved by the cam from the instant the follower
begins to rise, till it reaches its highest position
(e) moved by the can from beginning of i ascent to
the termination of descent.
Ans: b
151. Angle of descent of cam is defined as the angle
(a) during which the follower returns to its initial
position
(b) of rotation of the cam for a definite displacement
of the follower
(c) through which the cam rotates during the period
in which the follower remains in the highest position
(d) moved by the cam from the instant the follower
begins to rise, till it reaches its highest position
(e) moved by the cam from beginning of ascent to
the termination of descent.
Ans: a
152. Angle of action of cam is defined as the angle
(a) during which the follower returns to its initial
position
(b) of rotation of the cam for a definite displacement
of the follower
(c) through which the cam rotates during the period
in which the follower remains in the highest position
(d) moved by the cam from the instant the follower
begins to rise, till it reaches its highest position
(e) moved by the cam from beginning of ascent to
the termination of descent.
Ans: e
153. Angle of dwell of cam is defined as the angle
(a) during which the follower returns to its initial
position
(b) of rotation of the cam for definite dis¬placement
of the follower
(c) through which the cam rotates during the period
in which the follower remains in the highest position
(d) moved by the cam from the instant the follower
begins to rise, till it reaches its highest position
(e) moved by the cam from a beginning of ascent to
the termination of descent.
Ans: c
154. Angle of ascent of cam is defined as the angle
(a) during which the follower returns to its initial
position
(b) of rotation of the cam for a definite displacement
of the follower
(c) through which the cam rotates during the period
in which the follower remains in highest position
(d) moved by the cam from the instant the follower
begins to rise, till it reaches its highest position
(e) moved by the cam from beginning oi ascent to
the termination of descent.
Ans: d

Strength of Materials Multiple Choice Questions and Answers

Strength of Materials
Multiple Choice Questions and
Answers

1. The unit of force in S.I. units is
(a) kilogram
(b) newton
(c) watt
(d) dyne
(e) joule.
Ans: b
2. The unit of work or energy in S.I. units is
(a) newton
(b) pascal
(c) kilogram meter
(d) watt
(e) joule.
Ans: e
3. The unit of power in S.I. units is
(a) newton meter
(b) watt
(c) joule
(d) kilogram meter/sec.
(e) pascal per sec.
Ans: b
4. Forces are called concurrent when their lines of
action meet in
(a) one point
(b) two points
(c) plane
(d) perpendicular planes
(e) different planes.
Ans: a
5. Forces are called coplanar when all of them
acting on body lie in
(a) one point
(b) one plane
(c) different planes
(d) perpendicular planes
(e) different points.
Ans: b
6. A force acting on a body may
(a) introduce internal stresses
(b) balance the other forces acting on it
(c) retard its motion
(d) change its motion
(e) all of the above.
Ans: e
7. Which is the correct statement about law of
polygon of forces ?
(a) if any number of forces acting at a point can be
represented by the sides
of a polygon taken in order, then the forces are in
equilibrium
(b) if any number of forces acting at a point can be
represented in direction and magnitude by the sides
of a polygon, then the forces are in equilibrium
(c) if a polygon representing forces acting at a point
is closed then forces are in equilibrium
(d) if any number of forces acting at a point can be
represented in direction and magnitude by the sides
of a polygon taken in order, then the forces are in
equilibrium
(e) none of the above.
Ans: d
8. Effect of a force on a body depends upon
(a) magnitude
(b) direction
(c) position or line of action
(d) all of the above
(e) none of the above.
Ans: d
9. If a number of forces act simultaneously on
a particle, it is possible
(a) not a replace them by a single force
(b) to replace them by a single force
(c) to replace them by a single force through C.G.
(d) to replace them by a couple
(e) to replace them by a couple and a force.
Ans: b
11. A force is completely defined when we specify
(a) magnitude
(b) direction
(c) point of application
(d) all of the above
(e) none of the above.
Ans: d
12. If two equal forces of magnitude P act at an
angle 9°, their resultant will be
(a) P/2 cos 9/2
(b) IP sin 9/2
(c) 2P tan 9/2
(d) IP cos 9/2
(e) Psin 9/2.
Ans: d
13. The algebraic sum of the resolved parts of a
number of forces in a given direction is equal to the
resolved part of their resultant in the same
direction. This is as per the principle of
(a) forces
(b) independence of forces
(c) dependence of forces
(d) balance of force
(e) resolution of forces.
Ans: e
14. The resolved part of the resultant of two forces
inclined at an angle 9 in a given direction is equal to
(a) the algebraic sum of the resolved parts of the
forces in the given direction
(b) the sum of the resolved parts of the forces in
the given direction
(c) the difference of the forces multiplied by the
cosine of 9
(d) the sum of the forces multiplied by the sine of 9
(e) the sum of the forces multiplied by the tangent of
9.
Ans: a
15. Which of the following do not have identical
dimensions ?
(a) Momentum and impulse
(b) Torque and energy
(c) Torque and work
(d) Kinetic energy and potential energy
(e) Moment of a force and angular momentum.
Ans: e
16. Which of the following is not the unit of
distance ?
(a) angstrom
(b) light year
(c) micron
(d) millimeter
(e) milestone.
Ans: e
17. Which of the following is not the unit of power ?
(a) kW (kilowatt)
(b) hp (horse power)
(c) kcal/sec
(d) kg m/sec
(e) kcal/kg sec.
Ans: e
18. Which of the following is not the unit of work,
energy and heat ?
(a) kcal
(b) kg m
(c) kWhr
(d) hp
(e) hp hr.
Ans: d
19. Which of the following is not the unit of
pressure ?
(a) kg/cm
(b) ata
(c) atmosphere
(d) mm of wcl
(e) newton.
Ans: e
20. The weight of a body is due to
(a) centripetal force of earth
(b) gravitational pull exerted by the earth
(c) forces experienced by body in atmos-phere
(d) force of attraction experienced by par-ticles
(e) gravitational force of attraction towards the
centre of the earth.
Ans: e
21. The forces, which meet at one point, but their
lines of action do not lie in a plane, are called
(a) coplanar non-concurrent forces
(b) non-coplanar concurrent forces
(c) non-coplanar non-concurrent forces
(d) intersecting forces
(e) none of the above.
Ans: b
22. When trying to turn a key into a lock, following is
applied
(a) coplanar force
(b) non-coplanar forces
(c) lever
(d) moment
(e) couple.
Ans: e
23. Which of the following is not a scalar quantity
(a) time
(b) mass
(c) volume
(d) density
(e) acceleration.
Ans: e
24. According to principle of transmissibility of
forces, the effect of a force upon a body is
(a) maximum when it acts at the center of gravity of
a body
(b) different at different points in its line of action
(c) the same at every point in its line of action
(d) minimum when it acts at the C.G. of the body
(e) none of the above.
Ans: c
25. Which of the following is a vector quantity
(a) energy
(b) mass
(c) momentum
(d) angle
(e) speed.
Ans: c
26. The magnitude of two forces, which when acting
at right angle produce resultant force of VlOkg and
when acting at 60° produce resultant of Vl3 kg.
These forces are
(a) 2 and V6
(b) 3 and 1 kg
(c) V5andV5
(d) 2 and 5
(e) none of the above.
Ans: c
27. A number of forces acting at a point will be in
equilibrium if
(a) their total sum is zero
(b) two resolved parts in two directions at right
angles are equal
(c) sum of resolved parts in any two per-pendicular
directions are both zero
(d) all of them are inclined equally
(e) none of the above.
Ans: c
28. Two non-collinear parallel equal forces acting in
opposite direction
(a) balance each other
(b) constitute a moment
(c) constitute a couple
(d) constitute a moment of couple
(e) constitute a resultant couple.
Ans: c
29. According to principle of moments
(a) if a system of coplanar forces is in equilibrium,
then their algebraic sum is zero
(b) if a system of coplanar forces is in equilibrium,
then the algebraic sum of their moments about any
point in their plane is zero
(c) the algebraic sum of the moments of any two
forces about any point is equal to moment of
theiwesultant about the same point
(d) positive and negative couples can be balanced
(e) none of the above.
Ans: b
30. Which of the following is not a vector quantity
(a) weight
(b) velocity
(c) acceleration
(d) force
(e) moment.
Ans: a
31. According to law of triangle of forces
(a) three forces acting at a point will be in
equilibrium
(b) three forces acting at a point can be represented
by a triangle, each side being proportional to force
(c) if three forces acting upon a patticle are
represented in magnitude and direction by the sides
of a triangle, taken in order, they will be in
equilibrium
(d) if three forces acting at a point are in
equilibrium, each force is proportional to the sine of
the angle between the other two
(e) none of the above.
Ans: c
1033. If a rigid body is in equilibrium under the
action of three forces, then
(a) these forces are equal
(b) the lines of action of these forces meet in a point
(c) the lines of action of these forces are parallel
(d) (b) and (c) above
(e) none of the above.
Ans: d
1036. D' Alembert's principle is used for
(a) reducing the problem of kinetics to equivalent
statics problem
(b) determining stresses in the truss
(c) stability of floating bodies
(d) designing safe structures
(e) solving kinematic problems.
Ans: a
37. A heavy ladder resting on floor and against a
vertical wall may not be in equilibrium, if
(a) the floor is smooth, the wall is rough
(b) the floor is rough, the wall is smooth
(c) the floor and wall both are smooth surfaces
(d) the floor and wall both are rough sur-faces
(e) will be in equilibrium under all condi-tions.
Ans: c
38. According to Lami's theorem
(a) three forces acting at a point will be in
equilibrium
(b) three forces acting at a point can be represented
by a triangle, each side being proportional to force
(c) if three forces acting upon a particle are
represented in magnitude and
direction by the sides of a triangle, taken in order,
they will be in equilibrium
(d) if three forces acting at a point are in
equilibrium, each force is proportional to the sine of
the angle between the other two
(e) none of the above.
Ans: d
39. Two coplanar couples having equal and op-
posite moments
(a) balance each other
(b) produce a couple and an unbalanced force
(c) are equivalent
(d) produce a moment of couple
(e) can not balance each other.
Ans: e
40. A framed structure is perfect if it contains
members equal to
(a) 2n-3
(b) n-l
(c) '2n-l
(d) n - 2
(e) 3n-2.
where n = number of joints in a frame
Ans: a
42. The product of either force of couple with the
arm of the couple is called
(a) resultant couple
(b) moment of the forces
(c) resulting couple
(d) moment of the couple
(e) none of the above.
Ans: d
43. In detennining stresses in frames by methods of
sections, the frame is divided into two parts by an
imaginary section drawn in such a way as not to cut
more than
(a) two members with unknown forces of the frame
(b) three members with unknown forces of the
frame
(c) four members with unknown forces of the frame
(d) three members with known forces of the frame
(e) four members with two known forces.
Ans: b
44. The center of gravity of a uniform lamina lies at
(a) the center of heavy portion
(b) the bottom surface
(c) the mid point of its axis
(d) all of the above
(e) none of the above.
Ans: c
45. Center of gravity of a solid cone lies on the axis
at the height
(a) one-fourth of the total height above base
(b) one-third of the total height above base
(c) one-half of the total height above base
(d) three-eighth of the total height above the base
(e) none of the above.
Ans: a
46. Center of percussion is
(a) the point of C.G.
(b) the point of metacentre
(c) the point of application of the resultant of all the
forces tending to cause a body to rotate about a
certain axis
(d) point of suspension
(e) the point in a body about which it can rotate
horizontally and oscillate under the influence of
gravity.
Ans: c
47. Center of gravity of a thin hollow cone lies on
the axis at a height of
(a) one-fourth of the total height above base
(b) one-third of the total height above base
(c) one-half of the total height above base
(d) three-eighth of the total height above the base
(e) none of the above.
Ans: b
48. The units of moment of inertia of an area are
(a) kg m2
(b) m4
(c) kg/m2
(d) m3
(e) kg/m4.
Ans: b
49. The center of percussion of the homogeneous
rod of length L suspended at the top will be
(a) L/2
(b) L/3
(c) 3L/4
(d) 2L/3
(e) 3L/8.
Ans: d
50. The center of gravity of a triangle lies at the
point of
(a) concurrence of the medians
(b) intersection of its altitudes
(c) intersection of bisector of angles
(d) intersection of diagonals
(e) all of the above.
Ans: a
51. The units of moment of inertia of mass are
(a) kg m2
(b) m4
(c) kg/m2
(d) kg/m
(e) m2/kg.
Ans: a
52. The possible loading in various members of
framed structures are
(a) compression or tension
(b) buckling or shear
(c) shear or tension
(d) all of the above
(e) bending.
Ans: a
53. A heavy string attached at two ends at same
horizontal level and when central dip is very small
approaches the following curve
(a) catenary
(b) parabola
(c) hyperbola
(d) elliptical
(e) circular arc.
Ans: b
54. A trolley wire weighs 1.2 kg per meter length.
The ends of the wire are attached to two poles 20
meters apart. If the horizontal tension is 1500 kg
find the dip in the middle of the span
(a) 2.5 cm
(b) 3.0 cm
(c) 4.0 cm
(d) 5.0 cm
(e) 2.0 cm.
Ans: c
55. From a circular plate of diameter 6 cm is cut out
a circle whose diameter is a radius of the plate.
Find the e.g. of the remainder from the center of
circular plate
(a) 0.5 cm
(b) 1.0 cm
(c) 1.5 cm
(d) 2.5 cm
(e) 0.25 cm.
Ans: a
58. Pick up the incorrect statement from the
following :
(a) The C.G. of a circle is at its center
(b) The C.G. of a triangle is at the intersection of its
medians
(c) The C.G. of a rectangle is at the inter-section of
its diagonals
(d) The C.G. of a semicircle is at a distance of r/2
from the center
(e) The C-G. of an ellipse is at its center.
Ans: d
59. The centre of percussion of a solid cylinder of
radius r resting on a horizontal plane will be
(a) r/2
(b) 2r/3
(c) r/A
(d) 3r/2
(e) 3r/A.
Ans: d
62. In the equation of virtual work, following force is
neglected
(a) reaction of any smooth surface with which the
body is in contact
(b) reaction of a rough surface of a body which rolls
on it without slipping
(c) reaction at a point or an axis, fixed in space,
around which a body is con-strained to turn
(d) all of the above
(e) none of the above.
Ans: d
63. If a suspended body is struck at the centre of
percussion, then the pressure on die axis passing
through the point of suspension will be
(a) maximum
(b) minimum
(c) zero
(d) infinity
(e) same as the force applied.
Ans: c
65. The resultant of the following three couples 20
kg force, 0.5 m arm, $ ve sense 30 kg force, 1 m
arm, - ve sense 40 kg force, 0.25 m arm, + ve
sense having arm of 0.5 m will be
(a) 20 kg, - ve sense
(b) 20 kg, + ve sense
(c) 10 kg, + ve sense
(d) 10 kg, - ve sense
(e) 45 kg, + ve sense.
Ans: a
68. Angle oT friction is the
(a) angle between normal reaction and the resultant
of normal reaction and the limiting friction
(b) ratio of limiting friction and normal reaction
(c) the ratio of minimum friction force to the friction
force acting when the body is just about to move
(d) the ratio of minimum friction force to friction
force acting when the body is in motion
(e) ratio of static and dynamic friction.
Ans: a
69. The coefficient of friction depends on
(a) area of contact
(b) shape of surfaces
(c) strength of surfaces
(d) nature of surface
(e) all of the above.
Ans: d
70. Least force required to draw a body up the
inclined plane is W sin (plane inclination + friction
angle) applied in the direction
(a) along the plane
(b) horizontally
(c) vertically
(d) at an angle equal to the angle of friction to the
inclined plane
(e) unpredictable.
Ans: d
71. The ratio of limiting friction and normal reaction
is known as
(a) coefficient of friction
(b) angle of friction
(c) angle of repose
(d) sliding friction
(e) friction resistance.
Ans: a
72. Which one of the following statements is not
correct
(a) the tangent of the angle of friction is equal to
coefficient of friction
(b) the angle of repose is equal to angle of friction
(c) the tangent of the angle of repose is equal to
coefficient of friction
(d) the sine of the angle of repose is equal to
coefficient to friction
(e) none of the above.
Ans: d
73. On a ladder resting on smooth ground and
leaning against vertical wall, the force of friction will
be
(a) towards the wall at its upper end
(b) away from the wall at its upper end
(c) upwards at its upper end
(d) downwards at its upper end
(e) none of the above.
Ans: c
74. On the ladder resting on the ground and leaning
against a smooth vertical wall, the force of friction
will be
(a) downwards at its upper end
(b) upwards at its upper end
(c) perpendicular to the wall at its upper end
(d) zero at its upper end
(e) none of the above.
Ans: d
76. Frictional force encountered after
commencement of motion is called
(a) post friction
(b) limiting friction
(c) kinematic friction
(d) frictional resistance
(e) dynamic friction.
Ans: e
77. Coefficient of friction is the
(a) angle between normal reaction and the resultant
of normal reaction and the limiting friction
(b) ratio of limiting friction and normal reaction
(c) the friction force acting when the body is just
about to move
(d) the friction force acting when the body is in
motion
(e) tangent of angle of repose.
Ans: b
78. Pick up wrong statement about friction force for
dry surfaces. Friction force is
(a) proportional to normal load between the
surfaces
(b) dependent on the materials of contact surface
(c) proportional to velocity of sliding
(d) independent of the area of contact surfaces
(e) none of the above is wrong statement.
Ans: c
79. A body of weight W on inclined plane of a being
pulled up by a horizontal force P will be on the point
of motion up the plane when P is equal to
(a) W
(b) W sin (a + $)
(c) Wtan(a + <|))
(d) W\an(a-<t>)
(e) Wtana.
Ans: c
80. A particle moves along a straight line such that
distance (x) traversed in t seconds is given by x =
t2 (t - 4), the acceleration of the particle will be
given by the equation
(a) 3t2-lt
(b) 3t2+2t
(c) 6f-8
(d) 6f-4
(e) 6t2-8t.
Ans: c
81. If rain is falling in the opposite direction of the
movement of a pedestrain, he has to hold his
umbrella
(a) more inclined when moving
(b) less inclined when moving
(c) more inclined when standing
(d) less inclined when standing
(e) none of the above.
Ans: d
86. A projectile is fired at an angle 9 to the vertical.
Its horizontal range will be maximum when 9 is
(a) 0°
(b) 30°
(c) 45°
(d) 60°
(e) 90°.
Ans: c
88. Limiting force of friction is the
(a) tangent of angle between normal-reaction and
the resultant of normal reaction and limiting friction
(b) ratio of limiting friction and normal reaction
(c) the friction force acting when the body is just
about to move
(d) the friction force acting when the body is in
motion
(e) minimum force of friction.
Ans: c
89. Coulomb friction is the friction between
(a) bodies having relative motion
(b) two dry surfaces
(c) two lubricated surfaces
(d) solids and liquids
(e) electrically charged particles.
Ans: a
90. Dynamic friction as compared to static friction
is
(a) same
(b) more
(c) less
(d) may be less of more depending on nature of
surfaces and velocity
(e) has no correlation.
Ans: c
92. Tangent of angle of friction is equal to
(a) kinetic friction
(b) limiting friction
(c) angle of repose
(d) coefficient of friction
(e) friction force.
Ans: d
93. Kinetic friction is the
(a) tangent of angle between normal reac-tion and
the resultant of normal reac-tion and the limiting
friction
(b) ratio of limiting friction and normal reaction
(c) the friction force acting when the body is just
about to move
(d) the friction force acting when the body is in
motion
(e) dynamic friction.
Ans: d
95. The effort required to lift a load W on a screw
jack with helix angle a and angle of friction <j) is
equal to
(a) Wtan(a + <)>)
(b) Wtan(a-<)>)
(c) Wcos(a + <t>)
(d) Wsin(a + <(>)
(e) W (sin a + cos <j>).
Ans: a
96. A semi-circular disc rests on a horizontal
surface with its top flat surface horizontal and
circular portion touching down. The coefficient of
friction between semi-cricular disc and horizontal
surface is \i. This disc is to be pulled by a horizontal
force applied at one edge and it always remains
horizontal. When the disc is about to start moving,
its top horizontal force will
(a) remain horizontal
(b) slant up towards direction of pull
(c) slant down towards direction of pull
(d) unpredictable
(e) none of the above.
Ans: c
97. A particle inside a hollow sphere of radius r,
having coefficient of friction -rr can rest upto height
of
(a) r/2
(b) r/A
(c) r/%
(d) 0.134 r
(e) 3r/8.
Ans: d
98. The algebraic sum of moments of the forces
forming couple about any point in their plane is
(a) equal to the moment of the couple
(b) constant
(c) both of above are correct
(d) both of above are wrong
(e) none of the above.
Ans: a
99. A single force and a couple acting in the
same plane upon a rigid body
(a) balance each other
(b) cannot balance each other
(c) produce moment of a couple
(d) are equivalent
(e) none of the above.
Ans: b
100. If three forces acting in one plane upon a rigid
body, keep it in equilibrium, then they must either
(a) meet in a point
(b) be all parallel
(c) at least two of them must meet
(d) all the above are correct
(e) none of the above.
Ans: d
101. The maximum frictional force which comes
into play when a body just begins to slide over
another surface is called
(a) limiting friction
(b) sliding friction
(c) rolling friction
(d) kinematic friction
(e) dynamic friction.
Ans: a
102. The co-efficient of friction depends upon
(a) nature of surfaces
(b), area of contact
(c) shape of the surfaces
(d) ail of the above.
(e) (a) and (b) above.
Ans: a
104. The necessary condition for forces to be in
equilibrium is that these should be
(a) coplanar
(b) meet at one point ;
(c) both (a) and (b) above
(d) all be equal
(e) something else.
Ans: c
105. If three forces acting in different planes can be
represented by a triangle, these will be in
(a) non-equilibrium
(b) partial equilibrium
(c) full equilibrium
(d) unpredictable
(e) none of the above.
Ans: a
106. If n = number of members andy = number of
joints, then for a perfect frame, n =
(a) j-2
(b)2j-l
(c) 2/-3
(d)3/-2
(e) 2/ -4.
Ans: c
107. A body moves, from rest with a constant
acceleration of 5 m per sec. The distance covered
in 5 sec is most nearly
(a) 38 m
(b) 62.5 m
(C) 96 m
(d) 124 m
(e) 240 m.
Ans: b
108. A flywheel on a motor goes from rest to 1000
rpm in 6 sec. The number of revolutions made is
nearly equal to
(a) 25
(b) 50
(c) 100
(d) 250
(e) 500.
Ans: b
109 Which of the following is the locus of a point
that moves in such a manner that its distance from
a fixed point is equal to its distance from a fixed line
multiplied by a constant greater than one
(a) ellipse
(b) hyperbola
(c) parabola
(d) circle
(e) none of the above.
Ans: b
111. Which of the following is not the unit of energy
(a) kg m
(b) kcal
(c) wattr
(d) watt hours
(e) kg m x (m/sec)2.
Ans: c
112. A sample of metal weighs 219 gms in air, 180
gms in water, 120 gms in an unknown fluid. Then
which is correct statement about density of metal
(a) density of metal can't be determined
(b) metal is twice as dense as water
(c) metal will float in water
(d) metal is twice as dense as unknown fluid
(e) none of the above.
Ans: a
113. The C.G. of a solid hemisphere lies on the
central radius 3r
(a) at distance — from the plane base 3r
(b) at distance — from the plane base 3r
(c) at distance — from the plane base 3r
(d) at distance — from the plane base or
(e) at distance — from the plane base.
Ans: d
117. The C.G. of a plane lamina will not be at its
geometrical centre in the case of a
(a) right angled triangle
(b) equilateral triangle
(c) square
(d) circle
(e) rectangle.
Ans: a
119. The C.G. of a right circular solid cone of height
h lies at the following distance from the base
(a) h/2
(b) J/3
(c) h/6
(d) h/4
(e) 3/i/5.
Ans: d
122. The M.I. of hollow circular section about a
central axis perpendicular to section as compared
to its M.I. about horizontal axis is
(a) same
(b) double
(c) half
(d) four times
(e) one fourth.
Ans: b
126. Which of the following is the example of lever
of first order
(a) arm of man
(b) pair of scissors
(c) pair of clinical tongs
(d) all of the above
(e) none of the above.
Ans: d
127. A pair of smith's tongs is an example of the
lever of
(a) zeioth order
(b) first order
(c) second order
(d) third order
(e) fourth order.
Ans: c
128. In the lever of third order, load W, effort P and
fulcrum F are oriented as follows
(a) W between P and F
(b) F between W and P
(c) P between W and F
(d) W, P and F all on one side
(e) none of the above.
Ans: a
129. The angle which an inclined plane makes with
the horizontal when a body placed on it is about to
move down is known as angle of
(a) friction
(b) limiting friction
(c) repose
(d) kinematic friction
(e) static friction.
Ans: c
130. In actual machines
(a) mechanical advantage is greater than velocity
ratio
(b) mechanical advantage is equal to velocity
ratio
(c) mechanical advantage is less than velocity ratio
(d) mechanical advantage is unity
(e) none of the above.
Ans: c
131. In ideal machines
(a) mechanical advantage is greater than velocity
ratio
(b) mechanical advantage is equal to velocity
ratio
(c) mechanical advantage is less than velocity ratio
(d) mechanical advantage is unity
(e) none of the above.
Ans: b
132. A cable with a uniformly distributed load per
horizontal metre run will take the following shape
(a) straight line
(b) parabola
(c) hyperbola
(d) elliptical
(e) part of a circle.
Ans: b

Friday, 1 May 2015

Hydraulic Machines - Mechanical Engineering Multiple choice Questions and Answers

Hydraulic Machines -
Mechanical Engineering Multiple
choice Questions and Answers

1. Reciprocating pumps are no more to be seen in
industrial applications (in comparison to centrifugal
pumps) because of
(a) high initial and maintenance cost
(b) lower discharge
(c) lower speed of operation
(d) necessity of air vessel
(e) all of the above.
Ans: a
2. In a centrifugal pump casing, the flow of water
leaving the impeller, is
(a) rectilinear flow
(b) radial flow
(c) free vortex motion
(d) forced vortex
(e) none of the above.
Ans: c
3. Head developed by a centrifugal pump depends
on
(a) impeller diameter
(b) speed
(c) fluid density
(d) type of casing
(e) (a) and (b) above.
Ans: e
4. For starting an axial flow pump, its delivery valve
should be
(a) closed
(b) open
(c) depends on starting condition and flow desired
(d) could be either open or closed
(e) partly open and partly closed.
Ans: b
5. The efficiency of a centrifugal pump is maximum
when its blades are
(a) straight
(b) bent forward
(c) bent backward
(d) bent forward first and then backward
(e) bent backward first and then forward.
Ans: c
6. In a centrifugal pump casing, the flow of water
leaving the
(a) radial
(b) radial
(c) centrifugal
(d) rectilinear
(e) vortex.
Ans: e
7. Centrifugal pump is started with its delivery valve
(a) kept fully closed
(b) kept fully open
(c) irrespective of any position
(d) kept 50% open
(e) none of the above.
Ans: a
8. Axial flow pump is started with its delivery valve
(a) kept fully closed
(b) kept fully open
(c) irrespective of any position
(d) kept 50% open
(e) none of the above.
Ans: b
9. When a piping system is made up primarily of
vertical lift and very little pipe friction, the pump
characteristics should be
(a) horizontal
(b) nearly horizontal
(c) steep
(d) first rise and then fall
(e) none of the above.
Ans: c
10. One horsepower is equal to
(a) 102 watts
(b) 75 watts
(c) 550 watts
(d) 735 watts
(e) 33000 watts.
Ans: d
11. Multistage centrifugal pumps are used to obtain
(a) high discharge
(b) high head
(c) pumping of viscous fluids
(d) high head and high discharge
(e) high efficiency.
Ans: b
12. When a piping system is made up primarily of
friction head and very little of vertical lift, then pump
characteristics should be
(a) horizontal
(b) nearly horizontal
(c) steep
(d) first rise and then fall
(e) none of the above.
Ans: b
13. In a single casing, multistage pump running at
constant speed, the capacity rating is to be slightly
lowered. It can be done by
(a) designing new impeller
(b) trimming the impeller size to the required size by
machining
(c) not possible
(d) some other alterations in the impeller
(e) none of the above.
Ans: b
14. If a pump is handling water and is discharging a
certain flow Q at a constant total dynamic head
requiring a definite B.H.P., the same pump when
handling a liquid of specific gravity 0.75 and
viscosity nearly same as of water would discharge
(a) same quantity of liquid
(b) 0.75 Q
(c) Q/0.75
(d) 1.5 Q
(e) none of the above.
Ans: a
15. The horse power required in above case will be
(a) same
(b) 0.75 B.H.P.
(c) B.H.P./0.75
(d) 1.5 B.H.P.
(e) none of the above.
Ans: b
16. Low specific speed of a pump implies it is
(a) centrifugal pump
(b) mixed flow pump
(c) axial flow pump
(d) any one of the above
(e) none of the above.
Ans: a
17. The optimum value of vane exit angle for a
centrifugal pump impeller is
(a) 10-15°
(b) 20-25°
(c) 30-40°
(d) 50-60°
(e) 80-90°.
Ans: b
18. In a centrifugal pump, the liquid enters the pump
(a) at the top
(b) at the bottom
(c) at the center
(d) from sides
(e) none of the above.
Ans: c
19. For small discharge at high pressure, following
pump is preferred
(a) centrifugal
(b) axial flow
(c) mixed flow
(d) propeller
(e) reciprocating.
Ans: e
20. In centrifugal pumps, maximum efficiency is
obtained when the blades are
(a) straight
(b) bent forward
(c) bent backward
(d) radial
(e) given aerofoil section.
Ans: c
21. Motion of a liquid in a volute casing of a
centrifugal pump is an example of
(a) rotational flow
(b) radial
(c) forced spiral vortex flow
(d) forced cylindrical vortex flow
(e) spiral vortex flow.
Ans: e
22. For very high discharge at low pressure such as
for flood control and irrigation applications, following
type of pump is preferred
(a) centrifugal
(b) axial flow
(c) reciprocating
(d) mixed flow
(e) none of the above.
Ans: b
23. Medium specific speed of a pump implies it is
(a) centrifugal pump
(b) mixed flow pump
(c) axial flow pump
(d) any one of the above
(e) none of the above.
Ans: b
24. High specific speed of a pump implies it is
(a) centrifugal pump
(b) mixed flow pump
(c) axial flow pump
(d) any one of the above
(e) none of the above.
Ans: c
25. Indicator diagram of a reciprocating pump is a
graph between
(a) flow vs swept volume
(b) pressure in cylinder vs swept volume
(c) flow vs speed
(d) pressure vs speed
(e) swept volume vs speed.
Ans: b
26. Low specific speed of turbine implies it is
(a) propeller turbine
(b) Francis turbine
(c) impulse turbine
(d) any one of the above
(e) none of the above.
Ans: c
27. Any change in load is adjusted by adjusting
following parameter on turbine
(a) net head
(b) absolute velocity
(c) blade velocity
(d) flow
(e) relative velocity of flow at inlet.
Ans: d
28. Runaway speed of a hydraulic turbine is
(a) full load speed
(b) the speed at which turbine runner will be
damaged
(c) the speed if the turbine runner is allowed to
revolve freely without load and with the wicket
gates wide open
(d) the speed corresponding to maximum overload
permissible
(e) none of the above.
Ans: c
29. The maximum number of jets generally
employed in impulse turbine without jet interference
is
(a) 4
(b) 6
(c) 8
(d) 12
(e) 16.
Ans: b
30. Medium specific speea of turbine implies it is
(a) propeller turbine
(b) Francis turbine
(c) impulse turbine
(d) any one of the above
(e) none of the above.
Ans: b
31. High specific speed of turbine implies it is
(a) propeller turbine
(b) Francis turbine
(c) impulse turbine
(d) any one of the above
(e) none of the above.
Ans: a
32. The specific speed of turbine is defined as the
speed of a unit
(a) of such a size that it delivers unit dis-charge at
unit head
(b) of such a size that it delivers unit dis-charge at
unit power
(c) of such a size that it requires unit power per unit
head
(d) of such a size that it produces unit horse power
with unit head
(e) none of the above.
Ans: d
33. Puck up the wrong statement about centrifugal
pump
(a) discharge a diameter
(b) head a speed2
(c) head a diameter
(d) Power a speed3
(e) none of the above is wrong.
Ans: a
34. A turbine pump is basically a centrifugal pump
equipped additionally with
(a) adjustable blades
(b) backward curved blades
(c) vaned diffusion casing
(d) inlet guide blades
(e) totally submerged operation facility.
Ans: c
35. Casting of a centrifugal pump is designed so as
to minimize
(a) friction loss
(b) cavitation
(c) static head
(d) loss of kinetic energy
(e) starting time.
Ans: d
36. In reaction turbine, draft tube is used
(a) to transport water downstream without eddies
(b) to convert the kinetic energy to flow energy by a
gradual expansion of the flow cross-section
(c) for safety of turbine
(d) to increase flow rate
(e) none of the above.
Ans: b
37. Guide angle as per the aerofoil theory of Kaplan
turbine blade design is defined as the angle
between
(a) lift and resultant force
(b) drag and resultant force
(c) lift and tangential force
(d) lift and drag
(e) resultant force and tangential force.
Ans: a
38. Francis turbine is best suited for
(a) medium head application from 24 to 180 m
(b) low head installation up to 30 m
(c) high head installation above 180 m
(d) all types of heads
(e) none of the above.
Ans: a
39. The flow rate in gear pump
(a) increases with increase in pressure
(b) decreases with increase in pressure
(c) more or less remains constant with in-crease in
pressure
(d) unpredictable
(e) none of the above.
Ans: c
40. Impulse turbine is generally fitted
(a) at the level of tail race
(b) little above the tail race
(c) slightly below the tail race
(d) about 2.5 m above the tail race to avoid
cavitation
(e) about 2.5 m below the tail race to avoid
cavitation.
Ans: b
41. Francis, Kaplan and propeller turbines fall under
the category of
(a) Impulse turbines
(b) Reaction turbines
(c) Axial flow turbines
(d) Mixed flow turbines
(e) Reaction-cum-impulse turbines.
Ans: b
42. Reaction turbines are used for
(a) low head
(b) high head
(c) high head and low discharge
(d) high head and high discharge
(e) low head and high discharge.
Ans: e
43. The discharge through a reaction turbine with
increase in unit speed
(a) increases
(b) decreases
(c) remains unaffected
(d) first increases and then decreases
(e) first decreases and then increases.
Ans: b
44. The angle of taper on draft tube is
(a) greater than 15°
(b) greater than 8°
(c) greater than 5°
(d) less than 8°
(e) less than 3°.
Ans: d
45. Specific speed for reaction turbines ranges from
(a) 0 to 4.5
(b) 10 to 100
(c) 80 to 200
(d) 250 to 300
(e) none of the above.
Ans: b
46. In axial flow fans and turbines, fluid enters and
leaves as follows
(a) radially, axially
(b) axially, radially
(c) axially, axially
(d) radially, radially
(e) combination of axial and radial.
Ans: c
47. Which place in hydraulic turbine is most
susceptible for cavitation
(a) inlet of draft rube
(b) blade inlet
(c) guide blade
(d) penstock
(e) draft tube exit.
Ans: a
48. Air vessels in reciprocating pump are used to
(a) smoothen flow
(b) reduce acceleration to minimum
(c) increase pump efficiency
(d) save pump from cavitation
(e) increase pump head.
Ans: b
49. Saving of work done and power by fitting an air
vessel to single acting reciprocating pump is of the
order of
(a) 39.2%
(b) 49.2%
(c) 68.8%
(d) 84.8%
(e) 91.6%.
Ans: d
50. Saving of work done and power by fitting an air
vessel to double acting reciprocating pump is of the
order of
(a) 39.2%
(b) 49.2%
(c) 68.8%
(d) 84.8%
(e) 91.6%.
Ans: a
51. According to fan laws, for fans having constant
wheel diameter, the air or gas capacity varies
(a) directly as fan speed
(b) square of fan speed
(c) cube of fan speed
(d) square root of fan speed
(e) none of the above.
Ans: a
52. According to fan laws, for fans having constant
wheel diameter, the pressure varies
(a) directly as fan speed
(b) square of fan speed
(c) cube of fan speed
(d) square root of fan speed
(e) none of the above.
Ans: b
53. According to fan laws, for the fans having
constant wheel diameters, the power demand varies
(a) directly as fan speed
(b) square of fan speed
(c) cube of fan speed
(d) square root of fan speed
(e) none of the above.
Ans: c
54. According to fan laws, at constant speed and
capacity, the pressure and power vary
(a) directly as the air or gas density
(b) inversely as square root of density
(c) inversely as density
(d) as square of density
(e) as square root of density.
Ans: a
55. According to fan laws, at constant pressure, the
speed capacity and power vary
(a) directly as the air or gas density
(b) inversely as square root of density
(c) inversely as density
(d) as square of density
(e) as square root of density.
Ans: b
56. According to fan laws, at constant weight of air
or gas, the speed, capacity and pressure vary
(a) directly as the air or gas density
(b) inversely as square root of density
(c) inversely as density
(d) as square of density
(e) as square root of density.
Ans: c
57. Pressure intensifier increases the pressure in
proportion to
(a) ratio of diameters
(b) square of ratio of diameters
(c) inverse ratio of diameters
(d) square of inverse ratio of diameters
(e) fourth power of ratio of diameters.
Ans: b
58. A hydraulic accumulator normally consists of
(a) two cylinders, two rams and a storage device
(b) a cylinder and a ram
(c) two co-axial rams and two cylinders
(d) a cylinder, a piston, storage tank and control
valve
(e) special type of pump with storage device and a
pressure regulator.
Ans: b
59. A hydraulic intensifier normally consists of
(a) two cylinders, two rams and a storage device
(b) a cylinder and a ram
(c) two co-axial rams and two cylinders
(d) a cylinder, a piston, storage tank and control
valve
(e) special type of pump with storage device and a
pressure regulator.
Ans: c
60. Hydraulic accumulator is used for
(a) accumulating oil
(b) supplying large quantities of oil for very short
duration
(c) generally high pressures to operate hydraulic
machines
(d) supplying energy when main supply fails
(e) accumulating hydraulic energy.
Ans: d
61. Maximum impulse will be developed in hydraulic
ram when
(a) waste valve closes suddenly
(b) supply pipe is long
(c) supply pipe is short
(d) ram chamber is large
(e) supply pipe has critical diameter,
Ans: a

Fluid Mechanics - Mechanical Engineering Multiple choice Questions and Answers

Fluid Mechanics -
Mechanical Engineering Multiple
choice Questions and Answers

1. Fluid is a substance that
(a) cannot be subjected to shear forces
(b) always expands until it fills any container
(c) has the same shear stress.at a point regardless
of its motion
(d) cannot remain at rest under action of any shear
force
(e) flows.
Ans: d
2. Fluid is a substance which offers no resistance to
change of
(a) pressure
(b) flow
(c) shape
(d) volume
(e) temperature.
Ans: c
3. Practical fluids
(a) are viscous
(b) possess surface tension
(c) are compressible
(d) possess all the above properties
(e) possess none of the above properties.
Ans: d
4. In a static fluid
(a) resistance to shear stress is small
(b) fluid pressure is zero
(c) linear deformation is small
(d) only normal stresses can exist
(e) viscosity is nil.
Ans: d
5. A fluid is said to be ideal, if it is
(a) incompressible
(b) inviscous
(c) viscous and incompressible
(d) inviscous and compressible
(e) inviscous and incompressible.
Ans: e
6. An ideal flow of any fluid must fulfill the
following
(a) Newton's law of motion
(b) Newton's law of viscosity
(c) Pascal' law
(d) Continuity equation
(e) Boundary layer theory.
Ans: d
7. If no resistance is encountered by displacement,
such a substance is known as
(a) fluid
(b) water
(c) gas
(d) perfect solid
(e) ideal fluid.
Ans: e
8. The volumetric change of the fluid caused by a
resistance is known as
(a) volumetric strain
(b) volumetric index
(c) compressibility
(d) adhesion
(e) cohesion.
Ans: c
9. Liquids
(a) cannot be compressed
(b) occupy definite volume
(c) are not affected by change in pressure and
temperature
(d) are not viscous
(e) none of the above.
Ans: e
10. Density of water is maximum at
(a) 0°C
(b) 0°K
(c) 4°C
(d) 100°C
(e) 20°C.
Ans: c
11. The value of mass density in kgsecVm4 for
water at 0°C is
(a) 1
(b) 1000
(c) 100
(d) 101.9
(e) 91
Ans: d
12. Property of a fluid by which its own molecules
are attracted is called
(a) adhesion
(b) cohesion
(c) viscosity
(d) compressibility
(e) surface tension.
Ans: b
13. Mercury does not wet glass. This is due to
property of liquid known as
(a) adhesion
(b) cohesion
(c) surface tension
(d) viscosity
(e) compressibility.
Ans: c
14. The property of a fluid which enables it to resist
tensile stress is known as
(a) compressibility
(b) surface tension
(c) cohesion
(d) adhesion
(e) viscosity.
Ans: c
15. Property of a fluid by which molecules of
different kinds of fluids are attracted to each other
is called
(a) adhesion
(b) cohesion
(c) viscosity
(d) compressibility
(e) surface tension.
Ans: a
16. The specific weight of water is 1000 kg/m"
(a) at normal pressure of 760 mm
(b) at 4°C temperature
(c) at mean sea level
(d) all the above
(e) none of the above.
Ans: d
17. Specific weight of water in S.I. units is equal to
(a) 1000 N/m3
(b) 10000 N/m3
(c) 9.81 xlO3 N/m3
(d) 9.81 xlO6N/m3
(e) 9.81 N/m3.
Ans: c
18. When the flow parameters at any given instant
remain same at every point, then flow is said to be
(a) quasi static
(b) steady state
(c) laminar
(d) uniform
(e) static.
Ans: d
19. Which of the following is demensionless
(a) specific weight
(b) specific volume
(c) specific speed
(d) specific gravity
(e) specific viscosity.
Ans: d
20. The normal stress in a fluid will be constant in
all directions at a point only if
(a) it is incompressible
(b) it has uniform viscosity
(c) it has zero viscosity
(d) it is frictionless
(e) it is at rest.
Ans: e
21. The pressure at a point in a fluid will not be
same in all the directions when the fluid is
(a) moving
(b) viscous
(c) viscous and static
(d) inviscous and moving
(e) viscous and moving.
Ans: e
22. An object having 10 kg mass weighs 9.81kg on
a spring balance. The value of 'g' at this place is
(a) 10m/sec2
(b) 9.81 m/sec2
(c) 10.2/m sec
(d) 9.75 m/sec2
(e) 9 m/sec .
Ans: a
23. The tendency of a liquid surface to contract is
due to the following property
(a) cohesion
(b) adhesion
(c) viscosity
(d) surface tension
(e) elasticity.
Ans: d
24. The surface tension of mercury at normal
temperature compared to that of water is
(a) more
(b) less
(c) same
(d) more or less depending on size of glass tube
(e) none of the above.
Ans: a
25. A perfect gas
(a) has constant viscosity
(b) has zero viscosity
(c) is in compressible
(d) is of theoretical interest
(e) none of the above.
Ans: e
26. For very great pressures, viscosity of moss
gases and liquids
(a) remains same
(b) increases
(c) decreases
(d) shows erratic behavior
(e) none of the above.
Ans: d
27. A fluid in equilibrium can't sustain
(a) tensile stress
(b) compressive stress
(c) shear stress
(d) bending stress
(e) all of the above.
Ans: c
28. Viscosity of water in comparison to mercury is
(a) higher
(b) lower
(c) same
(d) higher/lower depending on temperature
(e) unpredictable.
Ans: a
29. The bulk modulus of elasticity with increase in
pressure
(a) increases
(b) decreases
(c) remains constant
(d) increases first up to certain limit and then
decreases
(e) unpredictable.
Ans: a
30. The bulk modulus of elasticity
(a) has the dimensions of 1/pressure
(b) increases with pressure
(c) is large when fluid is more compressible
(d) is independent of pressure and viscosity
(e) is directly proportional to flow.
Ans: b
31. A balloon lifting in air follows the following
principle
(a) law of gravitation
(b) Archimedes principle
(c) principle of buoyancy
(d) all of the above
(e) continuity equation.
Ans: d
32. The value of the coefficient of compressibility for
water at ordinary pressure and temperature in kg/
cm is equal to
(a) 1000
(b) 2100
(c) 2700
(d) 10,000
(e) 21,000.
Ans: e
33. The increase of temperature results in
(a) increase in viscosity of gas
(b) increase in viscosity of liquid
(c) decrease in viscosity of gas
(d) decrease in viscosity of liquid
(e) (a) and (d) above.
Ans: d
34. Surface tension has the units of
(a) newtons/m
(b) newtons/m
(c) new tons/m
(d) newtons
(e) newton m.
Ans: c
35. Surface tension
(a) acts in the plane of the interface normal to any
line in the surface
(b) is also known as capillarity
(c) is a function of the curvature of the interface
(d) decreases with fall in temperature
(e) has no units.
Ans: a
36. The stress-strain relation of the newtoneon fluid
is
(a) linear
(b) parabolic
(c) hyperbolic
(d) inverse type
(e) none of the above.
Ans: a
37. A liquid compressed in cylinder has a volume of
0.04 m3 at 50 kg/cm2 and a volume of 0.039 m3 at
150 kg/cm2. The bulk modulus of elasticity of liquid
is
(a) 400 kg/cm2
(b) 4000 kg/cm2
(c) 40 x 105 kg/cm2
(d) 40 x 106 kg/cm2
(e) none of the above.
Ans: b
38. The units of viscosity are
(a) metres2 per sec
(b) kg sec/metre
(c) newton-sec per metre2
(d) newton-sec per meter
(e) none of the above.
Ans: b
39. Kinematic viscosity is dependent upon
(a) pressure
(b) distance
(c) level
(d) flow
(e) density.
Ans: e
40. Units of surface tension are
(a) energy/unit area
(b) distance
(c) both of the above
(d) it has no units
(e) none of the above.
Ans: c
41. Which of the following meters is not associated
with viscosity
(a) Red wood
(b) Say bolt
(c) Engler
(d) Orsat
(e) none of the above.
Ans: d
42. Choose the correct relationship
(a) specific gravity = gravity x density
(b) dynamicviscosity = kinematicviscosity x density
(c) gravity = specific gravity x density
(d) kinematicviscosity = dynamicviscosity x density
(e) hydrostaticforce = surface tension x gravity.
Ans: b
43. Dimensions of surface tension are
(a) MlL°T2
(b) MlL°Tx
(c) MlL r2
(d) MlL2T2
(e) MlL°t.
Ans: a
44. For manometer, a better liquid combination is
one having
(a) higher surface tension
(b) lower surface tension
(c) surface tension is no criterion
(d) high density and viscosity
(e) low density and viscosity.
Ans: a
45. If mercury in a barometer is replaced by water,
the height of 3.75 cm of mercury will be following
cm of water
(a) 51 cm
(b) 50 cm
(c) 52 cm
(d) 52.2 cm
(e) 51.7 cm.
Ans: a
46. Choose the wrong statement.
Alcohol is used in manometer, because
(a) its vapour pressure is low
(b) it provides suitable meniscus for the inclined
tube
(c) its density is less
(d) it provides longer length for a given pressure
difference
(e) it provides accurate readings.
Ans: a
47. Increase in pressure at the outer edge of a
drum of radius R due to rotation at corad/sec, full of
liquid of density p will be
(a) pco2/?2
(b) pco2/?2/2
(c) 2pa2R2
(d) pa2R/2
(e) none of the above.
Ans: b
48. The property of fluid by virtue of which it offers
resistance to shear is called
(a) surface tension
(b) adhesion
(c) cohesion
(d) viscosity
(e) all of the above.
Ans: d
49. Choose the wrong statement
(a) fluids are capable of flowing
(b) fluids conform to the shape of the containing
vessels
(c) when in equilibrium, fluids cannot sustain
tangential forces
(d) when in equilibrium, fluids can sustain shear
forces
(e) fluids have some degree of comprehensibility
and offer little resistance to form.
Ans: d
50. The density of water is 1000 kg/m3 at
(a) 0°C
(b) 0°K
(c) 4°C (d) 20°C
(e) all temperature.
Ans: c
51. If w is the specific weight of liquid and k the
depth of any point from the surface, then pressure
intensity at that point will be
(a) h
(b) wh
(c) w/h
(d) h/w
(e) h/wh.
Ans: b
52. Choose the wrong statement
(a) Viscosity of a fluid is that property which
determines the amount of its resistance to a
shearing force
(b) Viscosity is due primarily to interaction between
fluid molecules
(c) Viscosity of liquids decreases with in-crease in
temperature
(d) Viscosity of liquids is appreciably affected by
change in pressure
(e) Viscosity is expressed as poise, stoke, or
saybolt seconds.
Ans: d
53. The units of kinematic viscosity are
(a) metres2 per sec
(b) kg sec/metre
(c) newton-sec per metre
(d) newton-sec per metre
(e) none of the above.
Ans: a
54.  The ratio of absolute viscosity to mass density
is known as
(a) specific viscosity
(b) viscosity index
(c) kinematic viscosity
(d) coefficient of viscosity
(e) coefficient of compressibility.
Ans: c
55. Kinematic viscosity is equal to
(a) dynamic viscosity/density
(b) dynamicviscosity x density
(c) density/dynamic viscosity
(d) 1/dynamicviscosity x density
(e) same as dynamic viscosity.
Ans: a
56. Which of the following is the unit of kinematic
viscosity
(a) pascal
(b) poise
(c) stoke
(d) faraday
(e) none of the above.
Ans: c
57. A one dimensional flow is one which
(a) is uniform flow
(b) is steady uniform flow
(c) takes place in straight lines
(d) involves zero transverse component of flow
(e) takes place in one dimension.
Ans: d
58.  Alcohol is used in manometers because
(a) it has low vapour pressure
(b) it is clearly visible
(c) it has low surface tension
(d) it can provide longer column due to low density
(e) is provides suitable meniscus.
Ans:  d
59. A pressure of 25 m of head of water is equal to
(a) 25 kN/m2
(b) 245 kN/m2
(c) 2500 kN/m2
(d) 2.5kN/m2
(e) 12.5 kN/m2.
Ans: b
60. Specific weight of sea water is more that of pure
water because it contains
(a) dissolved air
(b) dissolved salt
(c) suspended matter
(d) all of the above
(e) heavy water.
Ans: d
61. If 850 kg liquid occupies volume of one cubic
meter, men 0.85 represents its
(a) specific weight
(b) specific mass
(c) specific gravity
(d) specific density
(e) none of the above.
Ans: c
62. Free surface of a liquid tends to contract to the
smallest possible area due to force of
(a) surface tension
(b) viscosity
(c) friction
(d) cohesion
(e) adhesion.
Ans: a
63. A bucket of water is hanging from a spring
balance. An iron piece is suspended into water
without touching sides of bucket from another
support. The spring balance reading will
(a) increase
(b) decrease
(c) remain same
(d) increase/decrease depending on depth of
immersion
(e) unpredictable.
Ans: c
64. Falling drops of water become spheres due to
the property of
(a) adhesion
(b) cohesion
(c) surface tension
(d) viscosity
(e) compressibility.
Ans: c
65. A liquid would wet the solid, if adhesion forces
as compared to cohesion forces are
(a) less
(b) more
(c) equal
(d) less at low temperature and more at high
temperature
(e) there is no such criterion.
Ans: b
66. If cohesion between molecules of a fluid is
greater than adhesion between fluid and glass, then
the free level of fluid in a dipped glass tube will be
(a) higher than the surface of liquid
(b) the same as the surface of liquid
(c) lower than the surface of liquid
(d) unpredictable
(e) none of the above.
Ans: c
67. The point in the immersed body through which
the resultant pressure of the liquid may be taken to
act is known as
(a) meta center
(b) center of pressure
(c) center of buoyancy
(d) center of gravity
(e) none of the above.
Ans: b
68. The total pressure on the surface of a vertical
sluice gate 2 m x 1 m with its top 2 m surface being
0.5 m below the water level will be
(a) 500 kg
(b) 1000 kg
(c) 1500 kg
(d) 2000 kg
(e) 4000 kg.
Ans: d
69. The resultant upward pressure of a fluid on a
floating body is equal to the weight of the fluid
displaced by the body. This definition is according to
(a) Buoyancy
(b) Equilibrium of a floating body
(c) Archimedes' principle
(d) Bernoulli's theorem
(e) Metacentric principle.
Ans: c
70. The resultant upward pressure of the fluid on an
immersed body is called
(a) upthrust
(b) buoyancy
(c) center of pressure
(d) all the above are correct
(e) none of above is correct.
Ans: b
71. The conditions for the stable equilibrium of a
floating body are
(a) the meta-center should lie above the center of
gravity
(b) the center of buoyancy and the center of gravity
must lie on the same vertical line
(c) a righting couple should be formed
(d) all the above are correct
(e) none of the above is correct.
Ans: d
72. Poise is the unit of
(a) surface tension
(b) capillarity
(c) viscosity
(d) shear stress in fluids
(e) buoyancy.
Ans: c
73. Metacentric height is given as the distance
between
(a) the center of gravity of the body and the meta
center
(b) the center of gravity of the body and the center
of buoyancy
(c) the center of gravity of the body and the center
of pressure
(d) center of buoyancy and metacentre
(e) none of the above.
Ans: a
74. The buoyancy depends on
(a) mass of liquid displaced
(b) viscosity of the liquid
(c) pressure of the liquid displaced
(d) depth of immersion
(e) none of the above.
Ans: a
75. The center of gravity of the volume of the liquid
displaced by an immersed body is called
(a) meta-center
(b) center of pressure
(c) center of buoyancy
(d) center of gravity
(e) none of the above.
Ans: c
76. A piece of metal of specific gravity 13.6 is
placed in mercury of specific gravity 13.6, what
fraction of it volume is under mercury?
(a) the metal piece will simply float over the
mercury
(b) the metal piece will be immersed in mercury by
half
(c) whole of the metal piece will be immersed with
its top surface just at mercury level
(d) metal piece will sink to the bottom
(e) none of the above.
Ans: c
77. The angle of contact in case of a liquid depends
upon
(a) the nature of the liquid and the solid
(b) the material which exists above the free surface
of the liquid
(c) both of die above
(d) any one of the above
(e) none of die above.
Ans: c
78. Free surface of a liquid behaves like a sheet and
tends to contract to smallest possible area due to
the
(a) force of adhesion
(b) force of cohesion
(c) force of friction
(d) force of diffusion
(e) none of die above.
Ans: b
79.  Rain drops are spherical because of
(a) viscosity
(b) air resistance
(c) surface tension forces
(d) atmospheric pressure
(e) none of the above.
Ans: c
80.  Surface energy per unit area of a surface is
numerically equal to ..
(a) atmospheric pressure
(b) surface tension
(c) force of adhesion
(d) force of cohesion
(e) viscosity.
Ans: b
81. The capillary rise at 20°C in a clean glass tube
of 1 mm bore containing water is approximately
(a) 1 mm
(b) 5 mm
(c) 10 mm
(d) 20 mm
(e) 30 mm.
Ans: e
82.  The difference of pressure between the inside
and outside of a liquid drop is
(a)p = Txr
(b)p = T/r
(c) p = T/2r
(d)p = 2T/r
(e) none of the above.
Ans: d
83.  If the surface of liquid is convex, men
(a) cohesion pressure is negligible
(b) cohesion pressure is decreased
(c) cohesion pressure is increased
(d) there is no cohesion pressure
(e) none of the above.
Ans: c
84. To avoid vaporisation in the pipe line, the pipe
line over the ridge is laid such that it is not more
than
(a) 2.4 m above the hydraulic gradient
(b) 6.4 m above the hydraulic gradient
(c) 10.0 m above the hydraulic gradient
(d) 5.0 above the hydraulic gradient
(e) none of the above.
Ans: b
85. To avoid an interruption in the flow of a syphon,
an air vessel is provided
(a) at the inlet
(b) at the outlet
(c) at the summit
(d) ay nay point between inlet and outlet
(e) none of the above.
Ans: c
86. The vapour pressure over the concave surface
is
(a) less man the vapour pressure over the plane
surface
(b) equal to the vapour pressure over the plane
surface
(c) greater than the vapour pressure over the plane
surface
(d) zero
(e) none of the above.
Ans: a
87. The property by virtue of which a liquid opposes
relative motion between its different layers is called
(a) surface tension
(b) co-efficient of viscosity
(c) viscosity
(d) osmosis
(e) cohesion.
Ans: c
88. The process of diffusion of one liquid into the
other through a semi-permeable membrane is
called
(a) viscosity
(b) osmosis
(c) surface tension
(d) cohesion
(e) diffusivity.
Ans: b
89. The units of dynamic or absolute viscosity are
(a) metres2 per sec
(b) kg sec/meter
(c) newton-sec per meter
(d) newton-sec2 per meter
(e) none of the above.
Ans: c
90. The continuity equation is connected with
(a) viscous/unviscous fluids
(b) compressibility of fluids
(c) conservation of mass
(d) steady/unsteady flow
(e) open channel/pipe flow.
Ans: c
91. The rise or depression of liquid in a tube due to
surface tensionwim increase in size of tube will
(a) increase
(b) remain unaffected
(c) may increase or decrease depending on the
characteristics of liquid
(d) decrease
(e) unpredictable.
Ans: d
92. Liquids transmit pressure equally in all the
directions. This is according to
(a) Boyle's law
(b) Archimedes principle
(c) Pascal's law
(d) Newton's formula
(e) Chezy's equation.
Ans: c
93. Capillary action is due to the
(a) surface tension
(b) cohesion of the liquid
(c) adhesion of the liquid molecules and the
molecules on the surface of a solid
(d) all of the above
(e) none of the above.
Ans: d
94. Newton's law of viscosity is a relationship
between
(a) shear stress anctthejiate of angular distortion
(b) shear stress and viscosity
(c) shear stress, velocity and viscosity
(d) pressure, velocity and viscosity
(e) shear stress, pressure and rate of angular
distortion.
Ans: a
95. The atmospheric pressure with rise in altitude
decreases
(a) linearly
(b) first slowly and then steeply
(c) first steeply and then gradually
(d) unpredictable
(e) none of the above.
Ans: b
96. Pressure of the order of 10"' torr can be
measured by
(a) Bourdon tube
(b) Pirani Gauge
(c) micro-manometer
(d) ionisastion gauge
(e) McLeod gauge.
Ans: d
97. Operation of McLeod gauge used for low
pressure measurement is based on the principle of
(a) gas law
(b) Boyle's law
(c) Charle's law
(d) Pascal's law
(e) McLeod's law.
Ans: b
98. An odd shaped body weighing 7.5 kg and
occupying 0.01 m3 volume will be completely
submerged in a fluid having specific gravity of
(a) 1
(b) 1.2
(c) 0.8
(d) 0.75
(e) 1.25.
Ans: d
99. In an isothermal atmosphere, the pressure
(a) decreases linearly with elevation
(b) remains constant
(c) varies in the same way as the density
(d) increases exponentially with elevation
(e) unpredictable.
Ans: c
100. Mercury is often used in barometer because
(a) it is the best liquid
(b) the height of barometer will be less
(c) its vapour pressure is so low that it may be
neglected
(d) both (b) and (c)
(e) it moves easily.
Ans: d
101. Barometer is used to measure
(a) pressure in pipes, channels etc.
(b) atmospheric pressure
(c) very low pressure
(d) difference of pressure between two points
(e) rain level.
Ans: b
102. Which of the following instrument can be used
for measuring speed of a submarine moving in deep
sea
(a) Venturimeter
(b) Orifice plate
(c) hot wire anemometer
(d) rotameter
(e) pitot tube.
Ans: e
103. Which of the following instrument can be used
for measuring speed of an aeroplane
(a) Venturimeter
(b) Orifice plate
(c) hot wire anemometer
(d) rotameter
(e) pitot tube.
Ans: e
104. Piezometer is used to measure
(a) pressure in pipe, channels etc.
(b) atmospheric pressure
(c) very low pressures
(d) difference of pressure between two points
(e) flow.
Ans: c
105. Which of the following instruments is used to
measure flow on the application of Bernoulli's
theorem
(a) Venturimeter
(b) Orifice plate
(c) nozzle
(d) pitot tube
(e) all of the above.
Ans: e
106. The speed of sound in a ideal gas varies
directly as its
(a) pressure
(b) temperature
(c) density
(d) modulus of elasticity
(e) absolute temperature,
Ans: e
107. Dynamic viscosity of most of the liquids with
rise in temperature
(a) increases
(b) decreases
(a) remains unaffected
(d) unpredictable
(e) none of the above.
Ans: b
108. Dynamic viscosity of most of the gases with
rise in temperature
(a) increases
(b) decreases
(c) remains unaffected
(d) unpredictable
(e) none of the above.
Ans: a
109. A metal with specific gravity of o floating in a
fluid of same specific gravity a will
(a) sink to bottom
(b) float over fluid
(c) partly immersed
(d) be fully immersed with top surface at fluid
surface
(e) none of the above.
Ans: d
110. Euler's dimensionless number relates the
following
(a) inertial force and gravity
(b) viscous force and inertial force
(c) viscous force and buoyancy force
(d) pressure force and inertial force
(e) pressure force and viscous force.
Ans: d
111. Manometer is used to measure
(a) pressure in pipes, channels etc.
(b) atmospheric pressure
(c) very low pressure
(d) difference of pressure between two points
(e) velocity.
Ans: a
112. Which of the following manometer has highest
sensitivity
(a) U-tube with water
(b) inclined U-tube
(c) U-tube with mercury
(d) micro-manometer with water
(e) displacement type.
Ans: d
113. In order to increase sensitivity of U-tube
manometer, one leg is usually inclined by angle 9.
Sensitivity of inclined tube to sensitivity of U-tube is
equal to
(a) sin 9
(b) sin 9
(c) cas 9
(d) cos 9
(e) tan 9.
Ans: b
114. Working principle of dead weight pressure
gauge tester is based on
(a) Pascal's law
(b) Dalton's law of partial pressure
(c) Newton's law of viscosity .
(d) Avogadro's hypothesis
(e) Second law of thermodynamic.
Ans: a
115. The resultant of all normal pressures acts
(a) at e.g. of body
(b) at center of pressure
(c) vertically upwards
(d) at metacentre
(e) vertically downwards.
Ans: c
116. Center of pressure compared to e.g. is
(a) above it
(b) below it.
(c) at same point
(d) above or below depending on area of body
(e) none of the above.
Ans: b
117. Metacentric height is the distance between the
metacentre and
(a) water surface
(b) center of pressure
(c) center of gravity
(d) center of buoyancy
(e) none of the above.
Ans: c
118. The resultant upward pressure of the fluid on
an immersed body due to its tendency to uplift the
sub-merged body is called
(a) upthrust
(b) reaction
(c) buoyancy
(d) metacentre
(e) center of pressure.
Ans: c
119. The center of pressure of a surface subjected
to fluid pressure is the point
(a) on the surface at which resultant pres-sure acts
(b) on the surface at which gravitational force acis
(c) at which all hydraulic forces meet
(d) similar to metacentre
(e) where pressure equivalent to hydraulic thrust
will act.
Ans: a
120. Buoyant force is
(a) the resultant force acting on a floating body
(b) the resultant force on a body due to the fluid
surrounding it
(c) equal to  the volume of liquid dis-placed
(d) the force necessary to maintain equilibrium of a
submerged body
(e) none of the above.
Ans: b
121. The horizontal component of buoyant force is
(a) negligible
(b) same as buoyant force
(c) zero
Ans: c
122.  The line of action of the buoyant force acts
through the
(a) centroid of the volume of fluid vertically above
the body
(b) centre of the volume of floating body
(c) center of gravity of any submerged body
(d) centriod of the displaced volume of fluid
(e) none of the above.
Ans: d
123. Center of buoyancy is the
(a) centroid of the displaced volume of fluid
(b) center of pressure of displaced volume
(c) e.g. of floating 'body
(d) does not exist
(e) none of the above.
Ans: a
124. A body floats in stable equilibrium
(a) when its meatcentric height is zero
(b) when the metancentre is above e.g.
(c) when its e.g. is below it's center of buoyancy
(d) metacentre has nothing to do with position of
e.g. for determining stability
(e) none of the above.
Ans: b
125. A piece weighing 3 kg in air was found to
weigh 2.5 kg when submerged in water. Its specific
gravity is
(a) 1
(b) 5
(c) 7
(d) 6
Ans: d
126. The total pressure force on a plane area is
equal to the area multiplied by the intensity of
pressure at the centriod, if
(a) the area is horizontal
(b) the area is vertical
(c) the area is inclined
(d) all of the above
(e) none of the above.
Ans: d
127. A square surface 3 m x 3 m lies in a vertical
line in water pipe its upper edge at water surface.
The hydrostatic force on square surface is
(a) 9,000 kg
(b) 13,500 kg
(c) 18,000 kg
(d) 27,000 kg
(e) 30,000 kg.
Ans: b
128. The depth of the center of pressure on a
vertical rectangular gate 8 m wide and 6 m high,
when the water surface coincides with the top of the
gate, is
(a) 2.4m
(b) 3.0 m
(c) 4.0 m
(d)"2.5 m
(e) 5.0 m.
Ans: b
129. If the atmospheric pressure on the surface of
an oil tank (sp. gr. 0.8) is 0.2 kg/cm", the pressure
at a depth of 50 m below the oil surface will be
(a) 2 meters of water column
(b) 3 meters of water column
(c) 5 meters of water column
(d) 6 meters of water Column
(e) 7 meters of water column.
Ans: d
130. Metacentre is the point of intersection of
(a) vertical upward force through e.g. of body and
center line of body
(b) buoyant force and the center line of body
(c) mid point between e.g. and center of buoyancy
(d) all of the above
(e) none of the above.
Ans: b
131. Choose the wrong statement
(a) The horizontal component of the hydro-static
force on any surface is equal to the normal force on
the vertical projection of the surface
(b) The horizontal component acts through the
center of pressure for the vertical projection
(c) The vertical component of the hydrostatic force
on any surface is equal to the weight of the volume
of the liquid above the area
(d) he vertical component passes through the
center of pressure of the volume
(e) Center of pressure acts at a greater depth than
center of gravity.
Ans: d
132. For a body floating in a liquid the normal
pressure exerted by the liquid acts at
(a) bottom surface of the body
(b) e.g. of the body
(c) metacentre
(d) all points on the surface of the body
(e) all of the above.
Ans: d
133. Choose the wrong statement
(a) any weight, floating or immersed in a liquid, is
acted upon by a buoyant force
(p) Buoyant force is equal to the weight of the liquid
displaced
(c) The point through which buoyant force acts, is
called the center of buoyancy
(d) Center of buoyancy is located above the center
of gravity of the displaced liquid v
(e) Relative density of liquids can be determined by
means of the depth of flotation of hydrometer.
Ans: d
134. According to the principle of buoyancy a body
totally or partially immersed in a fluid will be lifted
up by a force equal to
(a) the weight of the body
(b) more than the weight of the body
(c) less than the weight of the body
(d) weight of the fluid displaced by the body
(e) weight of body plus the weight of the fluid
displaced hy the body.
Ans: d
135. When a body floating in a liquid, is displaced
slightly, it oscillates about
(a) e.g. of body
(b) center of pressure
(c) center of buoyancy
(d) metacentre
(e) liquid surface.
Ans: d
136. Buoyant force is
(a) resultant force acting on a floating body
(b) equal to the volume of liquid displaced
(c) force necessary to keep a body in equilibrium
(d) the resultant force on a body due to the fluid
surrounding it
(e) none of the above.
Ans: d
137. Ratio of inertia force to surface Jension is
known as
(a) Mach number
(b) Froude number
(c) Reynold's number
(d) Weber's number
(e) none of the above.
Ans: d
138. A ship whose hull length is 100 m is to travel at
10 m/sec. For dynamic similarity,
at what velocity should a 1:25 model be towed
through water ?
(a) 10 m/sec
(b) 25 m/sec
(c) 2 m/sec
(d) 50 m/sec
(e) 250 m/sec.
Ans: c
139. A model of a reservior is drained in 4 mts by
opening the sluice gate. The model scale is 1: 225.
How long should it take to empty the prototype ?
(a) 900 minutes
(b) 4 minutes
(c) 4 x (225)3/2 minutes
(d) 4 (225)1/3 minutes
(e) 4 x V225 minutes.
Ans: e
140. A model of torpedo is tested in a towing tank at
a velocity of 25 m/sec. The prototype is expected to
attain a velocity of 5 m/sec. What model scale has
been used ?
(a) 1 : 5
(b) 1 : 2.5
(c) 1 :25
(d) 1:V5"
(e) 1 : 53/2
Ans: a
141. Ratio of inertia force to elastic force is known
as
(a) Mach number
(b) Froude number
(c) Reynold's number
(d) Weber's number
(e) none of the above.
Ans: a
142. For a floating body to be in stable equilibrium,
its metacentre should be
(a) below the center of gravity
(b) below the center of buoyancy
(c) above the center of buoyancy
(d) between e.g. and center of pressure
(e) above the center of gravity.
Ans: e
143. For a floating body to be in equilibrium
(a) meta centre should be above e.g.
(b) centre of buoyancy and e.g. must lie on same
vertical plane
(c) a righting couple should be formed
(d) all of the above
(e) none of the above.
Ans: d
144. The two important forces for a floating body
are
(a) buoyancy, gravity
(b) buoyancy, pressure
(c) buoyancy, inertial
(d) inertial, gravity
(e) gravity, pressure.
Ans: a
145. Choose the wrong statement
(a) The center of buoyancy is located at the center
of gravity of the displaced liquid
(b) For stability of a submerged body, the center of
gravity of body must lie directly below the center of
buoyancy
(c) If e.g. and center of buoyancy coincide, the
submerged body must lie at neutral equilibrium for
all positions
(d) For stability of floating cylinders or spheres, the
e.g. of body must lie below the center of buoyancy
(e) All floating bodies are stable.
Ans: e
146. Center of pressure on an inclined plane is
(a) at the centroid
(b) above the centroid
(c) below the centroid
(d) at metacentre
(e) at center of pressure.
Ans: c
147. An open vessel of water is accelerated up an
inclined plane. The free water surface will
(a) be horizontal
(b) make an angle in direction of inclination of
inclined plane
(c) make an angle in opposite direction to inclination
of inclined plane
(d) any one of above is possible
(e) none of the above.
Ans: c
148. The line of action of the buoyant force acts
through the centroid of the
(a) submerged body
(b) volume of the floating body
(c) volume of the fluid vertically above the body
(d) displaced volume of the fluid
(e) none of the above.
Ans: d
149. Resultant pressure of the liquid in the case of
an immersed body acts through
(a) centre of gravity
(b) centre of pressure
(c) metacentre
(d) centre of buoyancy
(e) in between e.g. and centre of pressure.
Ans: b
150. The centre of gravity of the volume of the liquid
displaced by an immersed body is called
(a) centre of gravity
(b) centre of pressure
(c) metacentre
(d) centre of buoyancy
(e) centroid.
Ans: d
176. Differential monometer is used to measure
(a) pressure in pipes, channels etc.
(b) atmospheric pressure
(c) very low pressure
(d) difference of pressure between two points
(e) velocity in pipes
Ans: d
177. The pressure in the air space above an oil (sp.
gr. 0.8) surface in a tank is 0.1 kg/cm".
The pressure at 2.5 m below the oil surface will be
(a) 2 metres of water column
(b) 3 metres of water column
(c) 3.5 metres of water column
(d) 4 m of water column
(e) none of the above.
Ans: b
178. The time oscillation of a floating body with
increase in metacentric height will be
(a) same
(b) higher
(c) lower
(d) lower/higher depending on weight of body
(e) unpredictable.
Ans: c
179. In an immersed body, centre of pressure is
(a) at the centre of gravity
(b) above the centre of gravity
(c) below be centre of gravity
(d) could be above or below e.g. depend¬ing on
density of body and liquid
(e) unpredictable.
Ans: c
180. The normal stress is same in all directions at a
point in a fluid
(a) only when the fluid is frictionless
(b) only when the fluid is incompressible and has
zero viscosity
(c) when there is no motion of one fluid layer
relative to an adjacent layer
(d) irrespective of the motion of one fluid layer
relative to an adjacent layer
(e) in case of an ideal fluid.
Ans: c
181. Select the correct statement
(a) Local atmospheric pressure depends upon
elevation of locality only
(b) Standard atmospheric pressure is the mean
local atmospheric pressure a* sea level
(c) Local atmospheric pressure is always below
standard atmospheric pressure
(d) A barometer reads the difference be-tween local
and standard atmospheric pressure
(e) Gauge piessure is equal to atmospheric
pressure plus instrument reading.
Ans: b
184. For measuring flow by a venturimeter, if should
be installed in
(a) vertical line
(b) horizontal line
(c) inclined line with flow downward
(d) inclined line with upward flow\
(e) in any direction and in any location.
Ans: e
185. Total pressure on a lmxlm gate immersed
vertically at a depth of 2 m below the free water
surface will be
(a) 1000 kg
(b) 4000 kg
(c) 2000 kg
(d) 8000 kg
(e)  16000 kg.
Ans: a
186. Hot wire anemometer is used to measure
(a) pressure in gases
(b) liquid discharge
(c) pressure in liquids
(d) gas velocities
(e) temperature.
Ans: d
187. Rotameter is a device used to measure
(a) absolute pressure
(b) velocity of fluid
(c) flow
(d) rotation
(e) velocity of air.
Ans: c
18 Flow of water in a pipe about 3 metres in
diameter can be measured by
(a) orifice plate
(b) venturi
(c) rotameter
(d) pitot tube
(e) nozzle
Ans: d
189. True one-dimensional flow occurs when
(a) the direction and magnitude of the veiocity at all
points are identical
(b) the velocity of successive fluid par-ticles, at any
point, is the same at suc-cessive periods of time
(c) the magnitude and direction of the velocity do
not change from point to point in the fluid
(d) the fluid particles move in plane or parallel
planes and the streamline pat-terns are identical in
each plane
(e) velocity, depth, pressure etc. change from point
to point in the fluid flow.
Ans: a
190. An ideal flow of any fluid must satisfy
(a) Pascal law
(b) Newton's law of viscosity
(c) boundary layer theory
(d) continuity equation
(e) Bernoulli's theorem.
Ans: d
191. In the case of steady flow of a fluid, the
acceleration of any fluid particle is
(a) constant
(b) variable
(c) zero
(d) zero under limiting conditions
(e) never zero.
Ans: c
193. Non uniform flow occurs when
(a) the direction and magnitude of the velocity at all
points are identical
(b) the velocity of successive fluid particles, at any
point, is the same at successive periods of time
(c) the magnitude aricf direction of the velocity do
not change from point to point in the fluid
(d) the fluid particles move in plane or parallel
planes and the streamline pat-terns are identical in
each plane
(e) velocity, depth, pressure, etc. change from point
to point in the fluid flow.
Ans: e
194. During the opening of a valve in a pipe line, the
flow is
(a) steady
(b) unsteady
(c) uniform
(d) laminar
(e) free vortex type.
Ans: b
195. Uniform flow occurs when
(a) the flow is steady
(b) the flow is streamline
(c) size and shape of the cross section in a
particular length remain constant
(d) size and cross section change uniformly along
length
(e) flow occurs at constant fate.
Ans: c
196. Gradually varied flow is
(a) steady uniform
(b) non-steady non-uniform
(c) non-steady uniform
(d) steady non-uniform
(e) true one-dimensional.
Ans: d
197. Steady flow occurs when
(a) the direction and magnitude of the velocity at all
points are identical
(b) the velocity of successive fluid particles, at any
point, is the same at successive periods of time
(c) the magnitude and direction of the velocity do
not change from point to point in the fluid
(d) the fluid particles move in plane or parallel
planes and the streamline pat-terns are identical in
each plane
(e) velocity, depth, pressure, etc. change from point
to point in the fluid flow.
Ans: b
198. The flow which neglects changes in a
transverse direction is known as
(a) one dimensional flow
(b) uniform flow
(c) steady flow
(d) turbulent flow
(e) streamline flow.
Ans: a
199. The flow in which each liquid particle has a
definite path and their paths do not cross each
other is called
(a) one dimensional flow
(b) uniform flow
(c) steady flow
(d) turbulent flow
(e) streamline flow.
Ans: e
200. The flow in which conditions do not change
with time at any point, is known as
(a) one dimensional flow
(b) uniform flow
(c) steady flow
(d) turbulent flow
(e) streamline flow.
Ans: c
201. The flow in which the velocity vector is
identical in magnitude and direction at every point,
for any given instant, is known as
(a) one dimensional flow
(b) uniform flow
(c) steady flow
(d) turbulent flow
(e) streamline flow.
Ans: b
202. The flow in which the particles of a fluid attain
such velocities that vary from point to point in
magnitude and direction as well as from instant to
instant, is known as
(a) one dimensional flow
(b) uniform flow
(c) steady flow
(d) turbulent flow
(e) streamline flow.
Ans: d
210. Flow occurring in a pipeline when a valve is
being opened is
(a) steady
(b) unsteady
(c) laminar
(d) vortex
(e) rotational.
Ans: b
211. General energy equation holds for
(a) steady flow
(b) turbulent flow
(c) laminar flow
(d) non-uniform flow
(e) all of the above.
Ans: d
212. A streamline is defined as the line
(a) parallel to central axis flow
(b) parallel to outer surface of pipe
(c) of equal yelocity in a flow
(d) along which the pressure drop is uniform
(e) which occurs in all flows.
Ans: c
213. Two dimensional flow occurs when
(a) the direction and magnitude of the velocity at all
points are identical
(b) the velocity of successive fluid particles, at any
point, is the same at successive periods of time
(c) the magnitude and direction of the velocity do
not change from point to point in the fluid
(d) the fluid particles move in plane or parallel
planes and the streamline pat-terns are identical in
each plane
(e) velocity, depth, pressure, etc. change from point
to point in the fluid flow.
Ans: d
215. A piece of metal of specific gravity 7 floats in
mercury of specific gravity 13.6. What fraction of its
volume is under mercury ?
(a) 0.5
(b) 0.4
(c) 0.515
(d) 0.5
(e) none of the above.
Ans: c
216. A piece of wood having weight 5 kg floats in
water with 60% of its volume under the liquid. The
specific gravity of wood is
(a) 0.83
(b) 0.6
(c) 0.4
(d) 0.3
(e) none of the above.
Ans: b
218. The velocity of jet of water travelling out of
opening in a tank filled with water is proportional to
(a) head of water (h)
(b) h2
(c) V/T
(d) h2
(e) h3/1.
Ans: c
219. In a free vortex motion, the radial component
of velocity everywhere is
(a) maximum
(b) minimum
(c) zero
(d) non-zero and finite
(e) unpredictable.
Ans: c
220. In a forced vortex, the velocity of flow
everywhere within the fluid is
(a) maximum
(b) minimum
(c) zero
(d) non-zero finite
(e) unpredictable.
Ans: d
221. The region between the separation streamline
and the boundary surface of the solid body is
known as
(a) wake
(b) drag
(c) lift
(d) boundary layer
(e) aerofoil section.
Ans: a
222. For hypersonic flow, the Mach number is
(a) unity
(b) greater than unity
(c) greater than 2
(d) greater than 4
(e) greater than 10.
Ans: d
223. The upper surface of a weir over which water
flows is known is
(a) crest
(b) nappe
(c) sill
(d) weir top
(e) contracta.
Ans: c
224. Normal depth in open channel flow is the depth
of flow corresponding to
(a) steady flow
(b) unsteady flow
(c) laminar flow
(d) uniform flow
(e) critical flow.
Ans: d
226. Uniform flow occurs when
(a) the direction and magnitude of the velocity at all
points are identical
(b) the velocity of successive fluid paiticles, at any
point, is the same at successive periods of time
(c) the magnitude and direction of the velocity do
not change from point to point in the fluid
(d) the fluid particles move in plane or parallel
planes and the streamline pat-terns are identical in
each pleasure
(e) velocity, depth, pressure, etc. change from point
to point in the fluid flow.
Ans: c
227. Pitot tube is used for measurement of
(a) pressure
(b) flow
(c) velocity
(d) dsscharge
(e) viscosity.
Ans: c
22 Hydrometer is used to determine
(a) specific gravity of liquids
(b) specific gravity of solids
(c) specific gravity of gases
(d) relative humidity
(e) density.
Ans: a
229. The total energy of each particle at various
places in the case of perfect incompres sible fluid
flowing in continuous sream
(d) keeps on increasing
(b) keeps on decreasing
(c) remains constant
(d) may increase/decrease
(e) unpredictable.
Ans: c
230. According to Bernoulli's equation for steady
ideal fluid flow
(a) principle of conservation of mass holds
(b) velocity and pressure are inversely proportional
(c) total energy is constant throughout
(d) the energy is constant along a stream-line but
may vary across streamlines
(e) none of the above.
Ans: d
231. The  equation of continuity holds good when
the flow
(a) is steady
(b) is one dimensional
(c) velocity is uniform at all the cross sections
(d) all of the above
(e) none of the above.
Ans: d
232. Mach number is significant in
(a) supersonics, as with projectiles and jet
propulsion
(b) full immersion or completely enclosed flow, as
with pipes, aircraft wings, nozzles etc.
(c) simultaneous motion through two fluids where
there is a surface of dis-continuity, gravity force,
and wave making effects, as with ship's hulls
(d) all of fhe above
(e) none of the above.
Ans: a
233. Froude number is significant in
(a) supersonics, as with projectile and jet propulsion
(b) full immersion or completely enclosed flow, as
with pipes, aircraft wings, nozzles etc.
(c) simultaneous motion through two fluids where
there is a surface of dis-continuity, gravity forces,
and wave making effect, as with ship's hulls
(d) all of the above
(e) none of the above
Ans: c
234. All the terms of energy in Bernoulli's equation
have dimension of
(a) energy
(b) work
(c) mass
(d) length
(e) time.
Ans: d
235. Reynolds number is significant in
(a) supersonics, as with projectile and jet propulsion
(b) full immersion or completely enclosed flow, as
with pipes, aircraft wings, nozzles etc.
(c) simultaneous motion through two fluids where
there is a surface of dis-continuity, gravity forces,
and wave making effect, as with ship's hulls
(d) all of the above
(e) none of the above.
Ans: b
236.  The fluid forces considered in the Navier
Stokes equation are
(a) gravity, pressure and viscous
(b) gravity, pressure and turbulent
(c) pressure, viscous and turbulent
(d) gravity, viscous and turbulent
(e) none of the above.
Ans: a
237. A large Roynold number is indication of
(a) smooth and streamline flow
(b) laminar flow
(c) steady flow
(d) turbulent flow
(e) highly turbulent flow.
Ans: e
239. For pipes, laminar flow occurs when Roynolds
number is
(a) less than 2000
(b) between 2000 and 4000
(c) more than 4000
(d) less than 4000
(e) none of the above.
Ans: a
240. In order that flow takes place between two
points in a pipeline, the differential pressure
between these points must be more than
(a) frictional force
(b) viscosity
(c) surface friction
(d) all of the above
(e) none of the above.
Ans: d
241. At the center line of a pipe flowing under
pressure where the velocity gradient is zero, the
shear stress will be
(a) minimum
(b) maximum
(c) zero
(d) negative value
(e) could be any value.
Ans: e
242. The pressure in Pascals at a depth of 1 m
below the free surface of a body of water will be
equal to
(a) 1 Pa
(b) 91 Pa
(c) 981 Pa
(d) 9810 Pa
(e) 98,100 Pa.
Ans: d
244. Two pipe systems can be said to be equivalent,
when the following quantites are same
(a) friction loss and flow
(b) length and diameter
(c) flow and length
(d) friction factor and diameter
(e) velocity and diameter.
Ans: a
245. For pipes, turbulent flow occurs when
Reynolds number is
(a) less than 2000
(b) between 2000 and 4000
(c). more than 4000
(d) less than 4000
(e) none of the above.
Ans: c
246. Bernoulli equation deals with the law of
conservation of
(a) mass
(b) momentum
(c) energy
(d) work
(e) force.
Ans: c
247. A hydraulic press has a ram of 15 cm diameter
and plunger of 1.5 cm. It is required to lift a weight
of 1 tonne. The force required on plunger is equal to
(a) 10 kg
(b) 100 kg
(c) 1000 kg
(d) 1 kg
(e) 10,000 kg.
Ans: a
248. Cavitation is caused by
(a) high velocity
(b) high pressure
(c) weak material
(d) low pressure
(e) low viscosity.
Ans: d
249. Cavitation will begin when
(a) the pressure at any location reaches an absolute
pressure equal to the saturated vapour pressure of
the liquid
(b) pressure becomes more than critical pressure
(c) flow is increased
(d) pressure is increased
(e) none of the above.
Ans: a
250. Principle of similitude forms the basis of
(a) comparing two identical equipments
(b) designing models so that the result can be
converted to prototypes
(c) comparing similarity between design and actual
equipment
(d) hydraulic designs
(e) performing acceptance tests.
Ans: b
251. For similarity, in addition to models being
geometrically similar to prototype, the following in
both cases should also be equal
(a) ratio of inertial force to force due to viscosity
(b) ratio of inertial force to force due to gravitation
(c) ratio of inertial force to force due to surface
tension
(d) all the four ratios of inertial force to force due to
viscosity, gravitation, sur-face tension, and
elasticity
Ans: d